Cargando…

Molecular characterization of a panel of murine monoclonal antibodies specific for the SARS-coronavirus

The availability of monoclonal antibodies (mAbs) specific for the SARS-coronavirus (SARS-CoV) is important for the development of both diagnostic tools and treatment of infection. A molecular characterization of nine monoclonal antibodies raised in immune mice, using highly purified, inactivated SAR...

Descripción completa

Detalles Bibliográficos
Autores principales: Gubbins, Michael J., Plummer, Frank A., Yuan, Xin Y., Johnstone, Darrell, Drebot, Mike, Andonova, Maya, Andonov, Anton, Berry, Jody D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112650/
https://www.ncbi.nlm.nih.gov/pubmed/15488951
http://dx.doi.org/10.1016/j.molimm.2004.06.032
Descripción
Sumario:The availability of monoclonal antibodies (mAbs) specific for the SARS-coronavirus (SARS-CoV) is important for the development of both diagnostic tools and treatment of infection. A molecular characterization of nine monoclonal antibodies raised in immune mice, using highly purified, inactivated SARS-CoV as the inoculating antigen, is presented in this report. These antibodies are specific for numerous viral protein targets, and six of them are able to effectively neutralize SARS-CoV in vitro, including one with a neutralizing titre of 0.075 nM. A phylogenetic analysis of the heavy and light chain sequences reveals that the mAbs share considerable homology. The majority of the heavy chains belong to a single Ig germline V-gene family, while considerably more sequence variation is evident in the light chain sequences. These analyses demonstrate that neutralization ability can be correlated with specific murine V(H)-gene alleles. For instance, one evident trend is high sequence conservation in the V(H) chains of the neutralizing mAbs, particularly in CDR-1 and CDR-2. The results suggest that optimization of murine mAbs for neutralization of SARS-CoV infection will likely be possible, and will aid in the development of diagnostic tools and passive treatments for SARS-CoV infection.