Cargando…

Optimizing Alignment Parameters During Craniocervical Stabilization and Fusion: A Technical Note

Proper craniocervical alignment during craniocervical reduction, stabilization, and fusion optimizes cerebrospinal fluid (CSF) flow through the foramen magnum, establishes the appropriate “gaze angle”, avoids dysphagia and dyspnea, and, most importantly, normalizes the clival-axial angle (CXA) to re...

Descripción completa

Detalles Bibliográficos
Autores principales: Henderson, Fraser, Rosenbaum, Robert, Narayanan, Malini, Mackall, John, Koby, Myles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112711/
https://www.ncbi.nlm.nih.gov/pubmed/32257703
http://dx.doi.org/10.7759/cureus.7160
Descripción
Sumario:Proper craniocervical alignment during craniocervical reduction, stabilization, and fusion optimizes cerebrospinal fluid (CSF) flow through the foramen magnum, establishes the appropriate “gaze angle”, avoids dysphagia and dyspnea, and, most importantly, normalizes the clival-axial angle (CXA) to reduce ventral brainstem compression. To illustrate the metrics of reduction that include CXA, posterior occipital cervical angle, orbital-axial or “gaze angle”, and mandible-axial angle, we present a video illustration of a patient presenting with signs and symptoms of the cervical medullary syndrome along with concordant radiographic findings of craniocervical instability as identified on dynamic imaging and through assessment of the CXA, Harris, and Grabb-Oakes measurements.