Cargando…
Noise edge pitch and models of pitch perception
Monaural noise edge pitch (NEP) is evoked by a broadband noise with a sharp falling edge in the power spectrum. The pitch is heard near the spectral edge frequency but shifted slightly into the frequency region of the noise. Thus, the pitch of a lowpass (LP) noise is matched by a pure tone typically...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Acoustical Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112715/ https://www.ncbi.nlm.nih.gov/pubmed/31046377 http://dx.doi.org/10.1121/1.5093546 |
Sumario: | Monaural noise edge pitch (NEP) is evoked by a broadband noise with a sharp falling edge in the power spectrum. The pitch is heard near the spectral edge frequency but shifted slightly into the frequency region of the noise. Thus, the pitch of a lowpass (LP) noise is matched by a pure tone typically 2%–5% below the edge, whereas the pitch of highpass (HP) noise is matched a comparable amount above the edge. Musically trained listeners can recognize musical intervals between NEPs. The pitches can be understood from a temporal pattern-matching model of pitch perception based on the peaks of a simplified autocorrelation function. The pitch shifts arise from limits on the autocorrelation window duration. An alternative place-theory approach explains the pitch shifts as the result of lateral inhibition. Psychophysical experiments using edge frequencies of 100 Hz and below find that LP-noise pitches exist but HP-noise pitches do not. The result is consistent with a temporal analysis in tonotopic regions outside the noise band. LP and HP experiments with high-frequency edges find that pitch tends to disappear as the edge frequency approaches 5000 Hz, as expected from a timing theory, though exceptional listeners can go an octave higher. |
---|