Cargando…
Study on the resistance of severe acute respiratory syndrome-associated coronavirus
In this study, the persistence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) was observed in feces, urine and water. In addition, the inactivation of SARS-CoV in wastewater with sodium hypochlorite and chlorine dioxide was also studied. In vitro experiments demonstrated that...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112909/ https://www.ncbi.nlm.nih.gov/pubmed/15847934 http://dx.doi.org/10.1016/j.jviromet.2005.02.005 |
Sumario: | In this study, the persistence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) was observed in feces, urine and water. In addition, the inactivation of SARS-CoV in wastewater with sodium hypochlorite and chlorine dioxide was also studied. In vitro experiments demonstrated that the virus could only persist for 2 days in hospital wastewater, domestic sewage and dechlorinated tap water, while 3 days in feces, 14 days in PBS and 17 days in urine at 20 °C. However, at 4 °C, the SARS-CoV could persist for 14 days in wastewater and at least 17 days in feces or urine. SARS-CoV is more susceptible to disinfectants than Escherichia coli and f(2) phage. Free chlorine was found to inactivate SARS-CoV better than chlorine dioxide. Free residue chlorine over 0.5 mg/L for chlorine or 2.19 mg/L for chlorine dioxide in wastewater ensures complete inactivation of SARS-CoV while it does not inactivate completely E. coli and f(2) phage. |
---|