Cargando…
Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis
PURPOSE: Deep learning (DL), a class of approaches involving self-learned discriminative features, is increasingly being applied to digital pathology (DP) images for tasks such as disease identification and segmentation of tissue primitives (eg, nuclei, glands, lymphocytes). One application of DP is...
Autores principales: | Chen, Yijiang, Janowczyk, Andrew, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113072/ https://www.ncbi.nlm.nih.gov/pubmed/32155093 http://dx.doi.org/10.1200/CCI.19.00068 |
Ejemplares similares
-
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
por: Janowczyk, Andrew, et al.
Publicado: (2016) -
Quick Annotator: an open‐source digital pathology based rapid image annotation tool
por: Miao, Runtian, et al.
Publicado: (2021) -
Decentralized Learning Framework of Meta-Survival Analysis for Developing Robust Prognostic Signatures
por: Cui, Yi, et al.
Publicado: (2017) -
OSPred Tool: A Digital Health Aid for Rapid Predictive Analysis of Correlations Between Early End Points and Overall Survival in Non–Small-Cell Lung Cancer Clinical Trials
por: Shameer, Khader, et al.
Publicado: (2022) -
History of the SPIE Medical Imaging Digital Pathology Conference
por: Madabhushi, Anant, et al.
Publicado: (2022)