Cargando…
Systematic Review of Privacy-Preserving Distributed Machine Learning From Federated Databases in Health Care
Big data for health care is one of the potential solutions to deal with the numerous challenges of health care, such as rising cost, aging population, precision medicine, universal health coverage, and the increase of noncommunicable diseases. However, data centralization for big data raises privacy...
Autores principales: | Zerka, Fadila, Barakat, Samir, Walsh, Sean, Bogowicz, Marta, Leijenaar, Ralph T. H., Jochems, Arthur, Miraglio, Benjamin, Townend, David, Lambin, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113079/ https://www.ncbi.nlm.nih.gov/pubmed/32134684 http://dx.doi.org/10.1200/CCI.19.00047 |
Ejemplares similares
-
Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer
por: Bogowicz, Marta, et al.
Publicado: (2020) -
Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
por: Deist, Timo M., et al.
Publicado: (2017) -
Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19
por: Guiot, Julien, et al.
Publicado: (2020) -
Splitting chemical structure data sets for federated privacy-preserving machine learning
por: Simm, Jaak, et al.
Publicado: (2021) -
An externally validated fully automated deep learning algorithm to classify COVID-19 and other pneumonias on chest computed tomography
por: Vaidyanathan, Akshayaa, et al.
Publicado: (2022)