Cargando…

The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway

BACKGROUND: Although bone morphogenetic protein 6 (BMP6) signaling pathway has been implicated in many types of cancer, its role of tumorigenesis seems to be controversial and its ubiquitin-modifying mechanisms have not been fully addressed. Our study was designed to investigate how BMP6 signaling p...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Dongyeob, Jung, Su Myung, Park, Jin Seok, Lee, Jaewon, Ha, Jihoon, Kim, Minbeom, Park, Seok Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113187/
https://www.ncbi.nlm.nih.gov/pubmed/31685442
http://dx.doi.org/10.1016/j.ebiom.2019.10.039
_version_ 1783513616792682496
author Seo, Dongyeob
Jung, Su Myung
Park, Jin Seok
Lee, Jaewon
Ha, Jihoon
Kim, Minbeom
Park, Seok Hee
author_facet Seo, Dongyeob
Jung, Su Myung
Park, Jin Seok
Lee, Jaewon
Ha, Jihoon
Kim, Minbeom
Park, Seok Hee
author_sort Seo, Dongyeob
collection PubMed
description BACKGROUND: Although bone morphogenetic protein 6 (BMP6) signaling pathway has been implicated in many types of cancer, its role of tumorigenesis seems to be controversial and its ubiquitin-modifying mechanisms have not been fully addressed. Our study was designed to investigate how BMP6 signaling pathway is regulated by ubiquitin-modifying systems and to address molecular and clinical significance in colorectal cancers. METHODS: Human deubiquitnase (DUB) siRNA library was used to screen the specific DUB, named PSMD14, involved in BMP6 signaling pathway. Immunoblot, immunoprecipitation and ubiquitination assays were used to analyze targets of the PSMD14. A role of PSMD14-mediated BMP6 signaling pathway for malignant cancer progression was investigated using in vitro and in vivo model of colorectal cancers as well as clinical samples of colorectal cancer patients. FINDINGS: The deubiquitinase PSMD14 acts as a positive regulator for the initiation of the BMP6 signaling pathway through deubiquitinating K48-linked ALK2 type I receptor ubiquitination mediated by Smurf1 E3 ligase, resulting in increased stability of the ALK2. This role of PSMD14 is independent of its intrinsic role in the 26S proteasome system. Furthermore, either PSMD14 or ALK2 depletion significantly decreases tumorigenesis of HCT116 colorectal cancer cells in a xenograft model as well as cancer stemness/chemoresistance, and expression of the PSMD14 and ALK2 gene are correlated with malignant progression and the survival of colorectal cancer patients. INTERPRETATION: These findings suggest that the PSMD14-ALK2 axis plays an essential role in initiation of the BMP6 signaling pathway and contributes to tumorigenesis and chemoresistance of colorectal cancers.
format Online
Article
Text
id pubmed-7113187
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-71131872020-04-03 The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway Seo, Dongyeob Jung, Su Myung Park, Jin Seok Lee, Jaewon Ha, Jihoon Kim, Minbeom Park, Seok Hee EBioMedicine Research paper BACKGROUND: Although bone morphogenetic protein 6 (BMP6) signaling pathway has been implicated in many types of cancer, its role of tumorigenesis seems to be controversial and its ubiquitin-modifying mechanisms have not been fully addressed. Our study was designed to investigate how BMP6 signaling pathway is regulated by ubiquitin-modifying systems and to address molecular and clinical significance in colorectal cancers. METHODS: Human deubiquitnase (DUB) siRNA library was used to screen the specific DUB, named PSMD14, involved in BMP6 signaling pathway. Immunoblot, immunoprecipitation and ubiquitination assays were used to analyze targets of the PSMD14. A role of PSMD14-mediated BMP6 signaling pathway for malignant cancer progression was investigated using in vitro and in vivo model of colorectal cancers as well as clinical samples of colorectal cancer patients. FINDINGS: The deubiquitinase PSMD14 acts as a positive regulator for the initiation of the BMP6 signaling pathway through deubiquitinating K48-linked ALK2 type I receptor ubiquitination mediated by Smurf1 E3 ligase, resulting in increased stability of the ALK2. This role of PSMD14 is independent of its intrinsic role in the 26S proteasome system. Furthermore, either PSMD14 or ALK2 depletion significantly decreases tumorigenesis of HCT116 colorectal cancer cells in a xenograft model as well as cancer stemness/chemoresistance, and expression of the PSMD14 and ALK2 gene are correlated with malignant progression and the survival of colorectal cancer patients. INTERPRETATION: These findings suggest that the PSMD14-ALK2 axis plays an essential role in initiation of the BMP6 signaling pathway and contributes to tumorigenesis and chemoresistance of colorectal cancers. Elsevier 2019-11-01 /pmc/articles/PMC7113187/ /pubmed/31685442 http://dx.doi.org/10.1016/j.ebiom.2019.10.039 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Seo, Dongyeob
Jung, Su Myung
Park, Jin Seok
Lee, Jaewon
Ha, Jihoon
Kim, Minbeom
Park, Seok Hee
The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway
title The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway
title_full The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway
title_fullStr The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway
title_full_unstemmed The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway
title_short The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway
title_sort deubiquitinating enzyme psmd14 facilitates tumor growth and chemoresistance through stabilizing the alk2 receptor in the initiation of bmp6 signaling pathway
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113187/
https://www.ncbi.nlm.nih.gov/pubmed/31685442
http://dx.doi.org/10.1016/j.ebiom.2019.10.039
work_keys_str_mv AT seodongyeob thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT jungsumyung thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT parkjinseok thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT leejaewon thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT hajihoon thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT kimminbeom thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT parkseokhee thedeubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT seodongyeob deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT jungsumyung deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT parkjinseok deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT leejaewon deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT hajihoon deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT kimminbeom deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway
AT parkseokhee deubiquitinatingenzymepsmd14facilitatestumorgrowthandchemoresistancethroughstabilizingthealk2receptorintheinitiationofbmp6signalingpathway