Cargando…
Modified Crushed Oyster Shells for Fluoride Removal from Water
Elevated concentrations of fluoride ions (F(−)) in natural groundwater are a worldwide problem. Discarded oyster shells were ground to ≤100 µm particle size to produce oyster shell powder (OS). A subset of the OS was heated to produce calcined oyster shell (COS). A subset of the COS was further trea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113297/ https://www.ncbi.nlm.nih.gov/pubmed/32238852 http://dx.doi.org/10.1038/s41598-020-60743-7 |
Sumario: | Elevated concentrations of fluoride ions (F(−)) in natural groundwater are a worldwide problem. Discarded oyster shells were ground to ≤100 µm particle size to produce oyster shell powder (OS). A subset of the OS was heated to produce calcined oyster shell (COS). A subset of the COS was further treated with 1 M phosphoric acid to produce phosphoric-acid-treated oyster shell (POS). OS and COS were combined with phosphoric acid (1.6 mM and 3.2 mM) to produce OS + P (oyster shell with phosphoric acid) and COS + P (calcined oyster shell with phosphoric acid). OS and COS removed 46% and 50% (10 g/L of sorbent dose) but POS, OS + P and COS + P removed 96%, 100% and 76% (1 g/L of sorbent dose) when the initial concentration of fluoride was 10 mg/L. The sorption kinetics of POS, OS + P and COS + P followed second-order reaction rates, and sorption isotherms of all sorbents were well-described by the Freundlich sorption isotherm. These results indicate that oyster shells can be an effective sorbent for fluoride removal, with the added benefit of re-use of a waste product. |
---|