Cargando…

Synthesis of triphenylene-fused phosphole oxides via C–H functionalizations

The synthesis of triphenylene-fused phosphole oxides has been achieved through two distinct C–H functionalization reactions as key steps. The phosphole ring was constructed by a three-component coupling of 3-(methoxymethoxy)phenylzinc chloride, an alkyne, and dichlorophenylphosphine, involving the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahman, Md Shafiqur, Yoshikai, Naohiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113549/
https://www.ncbi.nlm.nih.gov/pubmed/32273913
http://dx.doi.org/10.3762/bjoc.16.48
Descripción
Sumario:The synthesis of triphenylene-fused phosphole oxides has been achieved through two distinct C–H functionalization reactions as key steps. The phosphole ring was constructed by a three-component coupling of 3-(methoxymethoxy)phenylzinc chloride, an alkyne, and dichlorophenylphosphine, involving the regioselective C–H activation of the C2 position of the arylzinc intermediate via 1,4-cobalt migration. The resulting 7-hydroxybenzo[b]phosphole derivative was used for further π-extension through Suzuki–Miyaura couplings and a Scholl reaction, the latter closing the triphenylene ring. The absorption and emission spectra of the thus-synthesized compounds illustrated their nature as hybrids of triphenylene and benzo[b]phosphole.