Cargando…
The surrogate matrix methodology: A reference implementation for low-cost assembly in isogeometric analysis
A reference implementation of a new method in isogeometric analysis (IGA) is presented. It delivers low-cost variable-scale approximations (surrogates) of the matrices which IGA conventionally requires to be computed by element-scale quadrature. To generate surrogate matrices, quadrature must only b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113627/ https://www.ncbi.nlm.nih.gov/pubmed/32257835 http://dx.doi.org/10.1016/j.mex.2020.100813 |
Sumario: | A reference implementation of a new method in isogeometric analysis (IGA) is presented. It delivers low-cost variable-scale approximations (surrogates) of the matrices which IGA conventionally requires to be computed by element-scale quadrature. To generate surrogate matrices, quadrature must only be performed on a fraction of the elements in the computational domain. In this way, quadrature determines only a subset of the entries in the final matrix. The remaining matrix entries are computed by a simple B-spline interpolation procedure. We present the modifications and extensions required for a reference implementation in the open-source IGA software library GeoPDEs. The exposition is fashioned to help facilitate similar modifications in other contemporary software libraries. • The surrogate matrix methodology is implemented in GeoPDEs. • Poisson’s problem is considered. • The matrix assembly time is significantly reduced at negligible cost to solution accuracy. |
---|