Cargando…
Development of a Real-Time Risk Prediction Model for In-Hospital Cardiac Arrest in Critically Ill Patients Using Deep Learning: Retrospective Study
BACKGROUND: Cardiac arrest is the most serious death-related event in intensive care units (ICUs), but it is not easily predicted because of the complex and time-dependent data characteristics of intensive care patients. Given the complexity and time dependence of ICU data, deep learning–based metho...
Autores principales: | Kim, Junetae, Park, Yu Rang, Lee, Jeong Hoon, Lee, Jae-Ho, Kim, Young-Hak, Huh, Jin Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113801/ https://www.ncbi.nlm.nih.gov/pubmed/32186517 http://dx.doi.org/10.2196/16349 |
Ejemplares similares
-
Usage Pattern Differences and Similarities of Mobile Electronic Medical Records Among Health Care Providers
por: Lee, Yura, et al.
Publicado: (2017) -
What Clinical Information Is Valuable to Doctors Using Mobile Electronic Medical Records and When?
por: Kim, Junetae, et al.
Publicado: (2017) -
Intra-hospital transport of critically ill patients with rapid response team and risk factors for cardiopulmonary arrest: A retrospective cohort study
por: Min, Hyun Ju, et al.
Publicado: (2019) -
A deep learning model for real-time mortality prediction in critically ill children
por: Kim, Soo Yeon, et al.
Publicado: (2019) -
Usefulness of cardiac magnetic resonance images for prediction of sudden cardiac arrest in patients with mitral valve prolapse: a multicenter retrospective cohort study
por: Lee, Jae-Hyuk, et al.
Publicado: (2021)