Cargando…

A convenient colorimetric assay for the quantification of porcine epidemic diarrhea virus and neutralizing antibodies

Neonatal enteritis caused by the porcine epidemic diarrhea virus (PEDV) is an important cause of high mortality and economic losses to the swine industry. Virus neutralization (V/N) assays are commonly requested in diagnostic laboratories for the assessment of protective antibodies. However, the vis...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Pankaj, Singh, Gagandeep, Karsky, Jenna, Nelson, Eric, Ramamoorthy, Sheela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113882/
https://www.ncbi.nlm.nih.gov/pubmed/30218684
http://dx.doi.org/10.1016/j.jviromet.2018.09.003
Descripción
Sumario:Neonatal enteritis caused by the porcine epidemic diarrhea virus (PEDV) is an important cause of high mortality and economic losses to the swine industry. Virus neutralization (V/N) assays are commonly requested in diagnostic laboratories for the assessment of protective antibodies. However, the visual assessment of viral cytopathic effects by operators to determine antibody titers or for viral quantification is a tedious, subjective and time-consuming process, especially when high volume testing is involved. To improve the ease of testing, a colorimetric virus neutralization and TCID(50) assays were developed and validated in this study using (3-(4,5-dimethylthiazol-2-yl) Tr-2,5-diphenyltetrazolium- bromide) (MTT), a colorimetric agent which measures cell viability. The respective conventional assays were used as the gold standards. An OD cut off value of ≤0.53, selected by receiver operating characteristics analysis, could distinguish between wells with and without CPE accurately. Performance and reproducibility parameters of the colorimetric assays were comparable to the conventional assays. The described methods can reduce testing time in diagnostic laboratories, while significantly improving current protocols.