Cargando…

Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions

We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s [Formula: see t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Wai-Yin, Chan, Jennifer So-Kuen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114253/
https://www.ncbi.nlm.nih.gov/pubmed/32287570
http://dx.doi.org/10.1016/j.csda.2010.06.011
Descripción
Sumario:We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s [Formula: see text] and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.