Cargando…

Transmissible gastroenteritis virus: Identification of M protein-binding peptide ligands with antiviral and diagnostic potential

The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Hao, Zarlenga, Dante S., Sestak, Karol, Suo, Siqingaowa, Ren, Xiaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. Published by Elsevier B.V. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114267/
https://www.ncbi.nlm.nih.gov/pubmed/23830854
http://dx.doi.org/10.1016/j.antiviral.2013.06.015
Descripción
Sumario:The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and characterized in more depth. A phage-based immunosorbent assay (phage-ELISA) capable of differentiating TGEV from other coronaviruses was developed using one phage, phTGEV-M7, as antigen. When the phage-ELISA was compared to conventional antibody-based ELISA for detecting infections, phage-ELISA exhibited greater sensitivity. A chemically synthesized, TGEV-M7 peptide (pepTGEV-M7; HALTPIKYIPPG) was evaluated for antiviral activity. Plaque-reduction assays revealed that pepTGEV-M7 was able to prevent TGEV infection in vitro (p < 0.01) following pretreatment of the virus with the peptide. Indirect immunofluorescence and real-time RT-PCR confirmed the inhibitory effects of the peptide. These results indicate that pepTGEV-M7 might be utilized for virus-specific diagnostics and treatment.