Cargando…
Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
INTRODUCTION: Deep learning neural networks are especially potent at dealing with structured data, such as images and volumes. Both modified LiviaNET and HyperDense-Net performed well at a prior competition segmenting 6-month-old infant magnetic resonance images, but neonatal cerebral tissue type id...
Autores principales: | Ding, Yang, Acosta, Rolando, Enguix, Vicente, Suffren, Sabrina, Ortmann, Janosch, Luck, David, Dolz, Jose, Lodygensky, Gregory A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114297/ https://www.ncbi.nlm.nih.gov/pubmed/32273836 http://dx.doi.org/10.3389/fnins.2020.00207 |
Ejemplares similares
-
NeoRS: A Neonatal Resting State fMRI Data Preprocessing Pipeline
por: Enguix, Vicente, et al.
Publicado: (2022) -
Supervised machine learning quality control for magnetic resonance artifacts in neonatal data sets
por: Ding, Yang, et al.
Publicado: (2018) -
Determining regional brain growth in premature and mature infants in relation to age at MRI using deep neural networks
por: Beizaee, Farzad, et al.
Publicado: (2023) -
DeepBrainSeg: Automated Brain Region Segmentation for Micro-Optical Images With a Convolutional Neural Network
por: Tan, Chaozhen, et al.
Publicado: (2020) -
Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
por: He, Xueqin, et al.
Publicado: (2021)