Cargando…
Ribavirin efficiently suppresses porcine nidovirus replication
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that represent emerging viral pathogens causing heavy economic impacts on the swine industry. Although ribavirin is a well-known antiviral drug against a broad range of both...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114464/ https://www.ncbi.nlm.nih.gov/pubmed/23108045 http://dx.doi.org/10.1016/j.virusres.2012.10.018 |
Sumario: | Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that represent emerging viral pathogens causing heavy economic impacts on the swine industry. Although ribavirin is a well-known antiviral drug against a broad range of both DNA and RNA viruses in vitro, its inhibitory effect and mechanism of action on porcine nidovirus replication remains to be elucidated. Therefore, the present study was conducted to determine whether ribavirin suppresses porcine nidovirus infection. Our results demonstrated that ribavirin treatment dose-dependently inhibited the replication of both nidoviruses. The antiviral activity of ribavirin on porcine nidovirus replication was found to be primarily exerted at early times post-infection. Treatment with ribavirin resulted in marked reduction of viral genomic and subgenomic RNA synthesis, viral protein expression, and progeny virus production in a dose-dependent manner. Investigations into the mechanism of action of ribavirin against PRRSV and PEDV revealed that the addition of guanosine to the ribavirin treatment significantly reversed the antiviral effects, suggesting that depletion of the intracellular GTP pool by inhibiting IMP dehydrogenase may be essential for ribavirin activity. Further sequencing analysis showed that the mutation frequency in ribavirin-treated cells was similar to that in untreated cells, indicating that ribavirin did not induce error-prone replication. Taken together, our data indicate that ribavirin might not only be a good therapeutic agent against porcine nidovirus, but also a potential candidate to be evaluated against other human and animal coronaviruses. |
---|