Cargando…

Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly emerging enteric coronavirus, is considered to be associated with swine acute diarrhea syndrome (SADS) which has caused significantly economic losses to the porcine industry. Interactions between SADS-CoV and the host innate immune respon...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Zhihai, Sun, Yuan, Yan, Xiaoling, Tang, Xiaoyu, Li, Qianniu, Tan, Yaorong, Lan, Tian, Ma, Jingyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114844/
https://www.ncbi.nlm.nih.gov/pubmed/31884203
http://dx.doi.org/10.1016/j.virusres.2019.197843
Descripción
Sumario:Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly emerging enteric coronavirus, is considered to be associated with swine acute diarrhea syndrome (SADS) which has caused significantly economic losses to the porcine industry. Interactions between SADS-CoV and the host innate immune response is unclear yet. In this study, we used IPEC-J2 cells as a model to explore potential evasion strategies employed by SADS-CoV. Our results showed that SADS-CoV infection failed to induce IFN-β production, and inhibited poly (I:C) and Sendai virus (SeV)-triggered IFN-β expression. SADS-CoV also blocked poly (I:C)-induced phosphorylation and nuclear translocation of IRF-3 and NF-κB. Furthermore, SADS-CoV did not interfere with the activity of IFN-β promoter stimulated by IRF3, TBK1 and IKKε, but counteracted its activation induced by IPS-1 and RIG-I. Collectively, this study is the first investigation that shows interactions between SADS-CoV and the host innate immunity, which provides information of the molecular mechanisms underlying SASD-CoV infection.