Cargando…
Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells
Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114934/ https://www.ncbi.nlm.nih.gov/pubmed/32269627 http://dx.doi.org/10.3892/ol.2020.11469 |
_version_ | 1783513989447155712 |
---|---|
author | Chen, Peng Shen, Zhengchao Fang, Xiaosan Wang, Guannan Wang, Xiaoming Wang, Jun Xi, Shihang |
author_facet | Chen, Peng Shen, Zhengchao Fang, Xiaosan Wang, Guannan Wang, Xiaoming Wang, Jun Xi, Shihang |
author_sort | Chen, Peng |
collection | PubMed |
description | Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and the potential of KRT17 as a therapeutic target for PAC. KRT17 expression levels were analyzed using quantitative PCR and compared with histological data using bioinformatics tools in PAC samples and three human PAC cell lines. Cell proliferation was determined using an MTT assay, in addition to cell cycle distribution and apoptosis analysis using flow cytometry, colony formation assay using Giemsa staining and cell motility analysis using a Transwell migration assay. Tumor growth was evaluated in vivo in nude mice. The expression levels of a number of signaling molecules were measured to establish the potential mechanism by which silencing KRT17 expression affected PAC PANC-1 cells. Increased levels of KRT17 expression were observed in human PAC compared with normal tissues, as well as in three human PAC cell lines (MIA PaCa-2, PANC-1 and KP-3 cells) compared with the H6c7 human immortal pancreatic duct epithelial cell line. High expression levels of KRT17 in PAC samples were associated with poor overall survival (P=0.036) and disease-free survival (P=0.017). Lentivirus-mediated KRT17 silencing inhibited cell proliferation, colony formation and migration, but promoted apoptosis and resulted in cell cycle arrest in the G(0)/G(1) phase in PANC-1 cells. In addition, KRT17 knockdown inhibited in vivo tumor growth. KRT17 knockdown induced dysregulation of ERK1/2 and upregulation of the pro-apoptotic Bcl-2 protein Bad. In conclusion, the present study demonstrated that elevated KRT17 levels are positively associated with pancreatic cancer progression; KRT17 knockdown suppressed cell growth, colony formation, migration and tumor growth, and induced apoptosis and cell cycle arrest, affecting ERK1/2/Bad signaling. Therefore, the results of the present study suggested that KRT17 may be a potential target for the treatment of pancreatic cancer. |
format | Online Article Text |
id | pubmed-7114934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-71149342020-04-08 Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells Chen, Peng Shen, Zhengchao Fang, Xiaosan Wang, Guannan Wang, Xiaoming Wang, Jun Xi, Shihang Oncol Lett Articles Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and the potential of KRT17 as a therapeutic target for PAC. KRT17 expression levels were analyzed using quantitative PCR and compared with histological data using bioinformatics tools in PAC samples and three human PAC cell lines. Cell proliferation was determined using an MTT assay, in addition to cell cycle distribution and apoptosis analysis using flow cytometry, colony formation assay using Giemsa staining and cell motility analysis using a Transwell migration assay. Tumor growth was evaluated in vivo in nude mice. The expression levels of a number of signaling molecules were measured to establish the potential mechanism by which silencing KRT17 expression affected PAC PANC-1 cells. Increased levels of KRT17 expression were observed in human PAC compared with normal tissues, as well as in three human PAC cell lines (MIA PaCa-2, PANC-1 and KP-3 cells) compared with the H6c7 human immortal pancreatic duct epithelial cell line. High expression levels of KRT17 in PAC samples were associated with poor overall survival (P=0.036) and disease-free survival (P=0.017). Lentivirus-mediated KRT17 silencing inhibited cell proliferation, colony formation and migration, but promoted apoptosis and resulted in cell cycle arrest in the G(0)/G(1) phase in PANC-1 cells. In addition, KRT17 knockdown inhibited in vivo tumor growth. KRT17 knockdown induced dysregulation of ERK1/2 and upregulation of the pro-apoptotic Bcl-2 protein Bad. In conclusion, the present study demonstrated that elevated KRT17 levels are positively associated with pancreatic cancer progression; KRT17 knockdown suppressed cell growth, colony formation, migration and tumor growth, and induced apoptosis and cell cycle arrest, affecting ERK1/2/Bad signaling. Therefore, the results of the present study suggested that KRT17 may be a potential target for the treatment of pancreatic cancer. D.A. Spandidos 2020-05 2020-03-20 /pmc/articles/PMC7114934/ /pubmed/32269627 http://dx.doi.org/10.3892/ol.2020.11469 Text en Copyright: © Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Chen, Peng Shen, Zhengchao Fang, Xiaosan Wang, Guannan Wang, Xiaoming Wang, Jun Xi, Shihang Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells |
title | Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells |
title_full | Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells |
title_fullStr | Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells |
title_full_unstemmed | Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells |
title_short | Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells |
title_sort | silencing of keratin 17 by lentivirus-mediated short hairpin rna inhibits the proliferation of panc-1 human pancreatic cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114934/ https://www.ncbi.nlm.nih.gov/pubmed/32269627 http://dx.doi.org/10.3892/ol.2020.11469 |
work_keys_str_mv | AT chenpeng silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells AT shenzhengchao silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells AT fangxiaosan silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells AT wangguannan silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells AT wangxiaoming silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells AT wangjun silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells AT xishihang silencingofkeratin17bylentivirusmediatedshorthairpinrnainhibitstheproliferationofpanc1humanpancreaticcancercells |