Cargando…
Application of Support Vector Machines in Viral Biology
Novel experimental and sequencing techniques have led to an exponential explosion and spiraling of data in viral genomics. To analyse such data, rapidly gain information, and transform this information to knowledge, interdisciplinary approaches involving several different types of expertise are nece...
Autores principales: | Modak, Sonal, Mehta, Swati, Sehgal, Deepak, Valadi, Jayaraman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114997/ http://dx.doi.org/10.1007/978-3-030-29022-1_12 |
Ejemplares similares
-
Classification of anti hepatitis peptides using Support Vector Machine with hybrid Ant Colony OptimizationThe Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers
por: Mishra, Gunjan, et al.
Publicado: (2016) -
Recent trends in antimicrobial peptide prediction using machine learning techniques
por: Shah, Yash, et al.
Publicado: (2017) -
Identification of Penicillin-binding proteins employing support vector machines and random forest
por: Nair, Vinay, et al.
Publicado: (2013) -
Quantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors
por: Mishra, Gunjan, et al.
Publicado: (2017) -
Structure based function prediction of proteins using fragment library frequency vectors
por: Yadav, Akshay, et al.
Publicado: (2012)