Cargando…
Hypocoercivity and Fast Reaction Limit for Linear Reaction Networks with Kinetic Transport
The long time behavior of a model for a first order, weakly reversible chemical reaction network is considered, where the movement of the reacting species is described by kinetic transport. The reactions are triggered by collisions with a nonmoving background with constant temperature, determining t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115090/ https://www.ncbi.nlm.nih.gov/pubmed/32269387 http://dx.doi.org/10.1007/s10955-020-02503-5 |
Sumario: | The long time behavior of a model for a first order, weakly reversible chemical reaction network is considered, where the movement of the reacting species is described by kinetic transport. The reactions are triggered by collisions with a nonmoving background with constant temperature, determining the post-reactional equilibrium velocity distributions. Species with different particle masses are considered, with a strong separation between two groups of light and heavy particles. As an approximation, the heavy species are modeled as nonmoving. Under the assumption of at least one moving species, long time convergence is proven by hypocoercivity methods for the cases of positions in a flat torus and in whole space. In the former case the result is exponential convergence to a spatially constant equilibrium, and in the latter it is algebraic decay to zero, at the same rate as solutions of parabolic equations. This is no surprise since it is also shown that the macroscopic (or reaction dominated) behavior is governed by the diffusion equation. |
---|