Cargando…

A Verified Implementation of the Berlekamp–Zassenhaus Factorization Algorithm

We formally verify the Berlekamp–Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for...

Descripción completa

Detalles Bibliográficos
Autores principales: Divasón, Jose, Joosten, Sebastiaan J. C., Thiemann, René, Yamada, Akihisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115093/
https://www.ncbi.nlm.nih.gov/pubmed/32269396
http://dx.doi.org/10.1007/s10817-019-09526-y
Descripción
Sumario:We formally verify the Berlekamp–Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for arbitrary univariate polynomials. The algorithm first performs factorization in the prime field [Formula: see text] and then performs computations in the ring of integers modulo [Formula: see text] , where both p and k are determined at runtime. Since a natural modeling of these structures via dependent types is not possible in Isabelle/HOL, we formalize the whole algorithm using locales and local type definitions. Through experiments we verify that our algorithm factors polynomials of degree up to 500 within seconds.