Cargando…

Decoding collective communications using information theory tools

Organisms have evolved sensory mechanisms to extract pertinent information from their environment, enabling them to assess their situation and act accordingly. For social organisms travelling in groups, like the fish in a school or the birds in a flock, sharing information can further improve their...

Descripción completa

Detalles Bibliográficos
Autores principales: Pilkiewicz, K. R., Lemasson, B. H., Rowland, M. A., Hein, A., Sun, J., Berdahl, A., Mayo, M. L., Moehlis, J., Porfiri, M., Fernández-Juricic, E., Garnier, S., Bollt, E. M., Carlson, J. M., Tarampi, M. R., Macuga, K. L., Rossi, L., Shen, C.-C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115225/
https://www.ncbi.nlm.nih.gov/pubmed/32183638
http://dx.doi.org/10.1098/rsif.2019.0563
_version_ 1783514053051678720
author Pilkiewicz, K. R.
Lemasson, B. H.
Rowland, M. A.
Hein, A.
Sun, J.
Berdahl, A.
Mayo, M. L.
Moehlis, J.
Porfiri, M.
Fernández-Juricic, E.
Garnier, S.
Bollt, E. M.
Carlson, J. M.
Tarampi, M. R.
Macuga, K. L.
Rossi, L.
Shen, C.-C.
author_facet Pilkiewicz, K. R.
Lemasson, B. H.
Rowland, M. A.
Hein, A.
Sun, J.
Berdahl, A.
Mayo, M. L.
Moehlis, J.
Porfiri, M.
Fernández-Juricic, E.
Garnier, S.
Bollt, E. M.
Carlson, J. M.
Tarampi, M. R.
Macuga, K. L.
Rossi, L.
Shen, C.-C.
author_sort Pilkiewicz, K. R.
collection PubMed
description Organisms have evolved sensory mechanisms to extract pertinent information from their environment, enabling them to assess their situation and act accordingly. For social organisms travelling in groups, like the fish in a school or the birds in a flock, sharing information can further improve their situational awareness and reaction times. Data on the benefits and costs of social coordination, however, have largely allowed our understanding of why collective behaviours have evolved to outpace our mechanistic knowledge of how they arise. Recent studies have begun to correct this imbalance through fine-scale analyses of group movement data. One approach that has received renewed attention is the use of information theoretic (IT) tools like mutual information, transfer entropy and causation entropy, which can help identify causal interactions in the type of complex, dynamical patterns often on display when organisms act collectively. Yet, there is a communications gap between studies focused on the ecological constraints and solutions of collective action with those demonstrating the promise of IT tools in this arena. We attempt to bridge this divide through a series of ecologically motivated examples designed to illustrate the benefits and challenges of using IT tools to extract deeper insights into the interaction patterns governing group-level dynamics. We summarize some of the approaches taken thus far to circumvent existing challenges in this area and we conclude with an optimistic, yet cautionary perspective.
format Online
Article
Text
id pubmed-7115225
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-71152252020-04-03 Decoding collective communications using information theory tools Pilkiewicz, K. R. Lemasson, B. H. Rowland, M. A. Hein, A. Sun, J. Berdahl, A. Mayo, M. L. Moehlis, J. Porfiri, M. Fernández-Juricic, E. Garnier, S. Bollt, E. M. Carlson, J. M. Tarampi, M. R. Macuga, K. L. Rossi, L. Shen, C.-C. J R Soc Interface Review Articles Organisms have evolved sensory mechanisms to extract pertinent information from their environment, enabling them to assess their situation and act accordingly. For social organisms travelling in groups, like the fish in a school or the birds in a flock, sharing information can further improve their situational awareness and reaction times. Data on the benefits and costs of social coordination, however, have largely allowed our understanding of why collective behaviours have evolved to outpace our mechanistic knowledge of how they arise. Recent studies have begun to correct this imbalance through fine-scale analyses of group movement data. One approach that has received renewed attention is the use of information theoretic (IT) tools like mutual information, transfer entropy and causation entropy, which can help identify causal interactions in the type of complex, dynamical patterns often on display when organisms act collectively. Yet, there is a communications gap between studies focused on the ecological constraints and solutions of collective action with those demonstrating the promise of IT tools in this arena. We attempt to bridge this divide through a series of ecologically motivated examples designed to illustrate the benefits and challenges of using IT tools to extract deeper insights into the interaction patterns governing group-level dynamics. We summarize some of the approaches taken thus far to circumvent existing challenges in this area and we conclude with an optimistic, yet cautionary perspective. The Royal Society 2020-03 2020-03-18 /pmc/articles/PMC7115225/ /pubmed/32183638 http://dx.doi.org/10.1098/rsif.2019.0563 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Review Articles
Pilkiewicz, K. R.
Lemasson, B. H.
Rowland, M. A.
Hein, A.
Sun, J.
Berdahl, A.
Mayo, M. L.
Moehlis, J.
Porfiri, M.
Fernández-Juricic, E.
Garnier, S.
Bollt, E. M.
Carlson, J. M.
Tarampi, M. R.
Macuga, K. L.
Rossi, L.
Shen, C.-C.
Decoding collective communications using information theory tools
title Decoding collective communications using information theory tools
title_full Decoding collective communications using information theory tools
title_fullStr Decoding collective communications using information theory tools
title_full_unstemmed Decoding collective communications using information theory tools
title_short Decoding collective communications using information theory tools
title_sort decoding collective communications using information theory tools
topic Review Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115225/
https://www.ncbi.nlm.nih.gov/pubmed/32183638
http://dx.doi.org/10.1098/rsif.2019.0563
work_keys_str_mv AT pilkiewiczkr decodingcollectivecommunicationsusinginformationtheorytools
AT lemassonbh decodingcollectivecommunicationsusinginformationtheorytools
AT rowlandma decodingcollectivecommunicationsusinginformationtheorytools
AT heina decodingcollectivecommunicationsusinginformationtheorytools
AT sunj decodingcollectivecommunicationsusinginformationtheorytools
AT berdahla decodingcollectivecommunicationsusinginformationtheorytools
AT mayoml decodingcollectivecommunicationsusinginformationtheorytools
AT moehlisj decodingcollectivecommunicationsusinginformationtheorytools
AT porfirim decodingcollectivecommunicationsusinginformationtheorytools
AT fernandezjuricice decodingcollectivecommunicationsusinginformationtheorytools
AT garniers decodingcollectivecommunicationsusinginformationtheorytools
AT bolltem decodingcollectivecommunicationsusinginformationtheorytools
AT carlsonjm decodingcollectivecommunicationsusinginformationtheorytools
AT tarampimr decodingcollectivecommunicationsusinginformationtheorytools
AT macugakl decodingcollectivecommunicationsusinginformationtheorytools
AT rossil decodingcollectivecommunicationsusinginformationtheorytools
AT shencc decodingcollectivecommunicationsusinginformationtheorytools