Cargando…
Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer
The underlying molecular mechanisms of cisplatin resistance in non-small cell lung cancer (NSCLC) are unclear. In this study, a novel differential methylation region located in the upstream regulatory region of the forkhead box F1 (FOXF1) gene was identified. The abnormal hypomethylation of FOXF1 in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115358/ https://www.ncbi.nlm.nih.gov/pubmed/32319573 http://dx.doi.org/10.3892/ijo.2020.5003 |
_version_ | 1783514079794561024 |
---|---|
author | Zhao, Jian Xue, Xingyang Fu, Wenfan Dai, Lu Jiang, Zeyong Zhong, Shengpeng Deng, Boyun Yin, Jun |
author_facet | Zhao, Jian Xue, Xingyang Fu, Wenfan Dai, Lu Jiang, Zeyong Zhong, Shengpeng Deng, Boyun Yin, Jun |
author_sort | Zhao, Jian |
collection | PubMed |
description | The underlying molecular mechanisms of cisplatin resistance in non-small cell lung cancer (NSCLC) are unclear. In this study, a novel differential methylation region located in the upstream regulatory region of the forkhead box F1 (FOXF1) gene was identified. The abnormal hypomethylation of FOXF1 increased the expression of FOXF1, and the high expression of FOXF1 promoted cell proliferation and inhibited cell apoptosis induced by cisplatin, which resulted in cisplatin resistance in NSCLC cells. In addition, FOXF1 promoted the expression of stem cell markers and self-renewal capability, indicating that FOXF1 regulated cisplatin resistance by promoting cancer stem cell properties in NSCLC cells. Moreover, a strong association was observed between FOXF1 upregulation and the presence of platinum-based chemotherapy resistance in patients with NSCLC. On the whole, the findings of this study indicate the regulatory mechanisms of cisplatin resistance by FOXF1 in NSCLC, and suggest that FOXF1 may be used as a prognostic biomarker of platinum-based chemotherapy resistance in NSCLC. |
format | Online Article Text |
id | pubmed-7115358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-71153582020-04-08 Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer Zhao, Jian Xue, Xingyang Fu, Wenfan Dai, Lu Jiang, Zeyong Zhong, Shengpeng Deng, Boyun Yin, Jun Int J Oncol Articles The underlying molecular mechanisms of cisplatin resistance in non-small cell lung cancer (NSCLC) are unclear. In this study, a novel differential methylation region located in the upstream regulatory region of the forkhead box F1 (FOXF1) gene was identified. The abnormal hypomethylation of FOXF1 increased the expression of FOXF1, and the high expression of FOXF1 promoted cell proliferation and inhibited cell apoptosis induced by cisplatin, which resulted in cisplatin resistance in NSCLC cells. In addition, FOXF1 promoted the expression of stem cell markers and self-renewal capability, indicating that FOXF1 regulated cisplatin resistance by promoting cancer stem cell properties in NSCLC cells. Moreover, a strong association was observed between FOXF1 upregulation and the presence of platinum-based chemotherapy resistance in patients with NSCLC. On the whole, the findings of this study indicate the regulatory mechanisms of cisplatin resistance by FOXF1 in NSCLC, and suggest that FOXF1 may be used as a prognostic biomarker of platinum-based chemotherapy resistance in NSCLC. D.A. Spandidos 2020-03-04 /pmc/articles/PMC7115358/ /pubmed/32319573 http://dx.doi.org/10.3892/ijo.2020.5003 Text en Copyright: © Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhao, Jian Xue, Xingyang Fu, Wenfan Dai, Lu Jiang, Zeyong Zhong, Shengpeng Deng, Boyun Yin, Jun Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
title | Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
title_full | Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
title_fullStr | Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
title_full_unstemmed | Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
title_short | Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
title_sort | epigenetic activation of foxf1 confers cancer stem cell properties to cisplatin-resistant non-small cell lung cancer |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115358/ https://www.ncbi.nlm.nih.gov/pubmed/32319573 http://dx.doi.org/10.3892/ijo.2020.5003 |
work_keys_str_mv | AT zhaojian epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT xuexingyang epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT fuwenfan epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT dailu epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT jiangzeyong epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT zhongshengpeng epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT dengboyun epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer AT yinjun epigeneticactivationoffoxf1conferscancerstemcellpropertiestocisplatinresistantnonsmallcelllungcancer |