Cargando…
A fractionally integrated autoregressive moving average approach to forecasting tourism demand
The primary aim of this paper is to incorporate fractionally integrated ARMA (p, d, q) (ARFIMA) models into tourism forecasting, and to compare the accuracy of forecasts with those obtained by previous studies. The models are estimated using the volume of monthly international tourist arrivals in Si...
Autor principal: | Chu, Fong-Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115486/ https://www.ncbi.nlm.nih.gov/pubmed/32287722 http://dx.doi.org/10.1016/j.tourman.2007.04.003 |
Ejemplares similares
-
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021) -
Future Trend Forecast by Empirical Wavelet Transform and Autoregressive Moving Average
por: Wang, Qiusheng, et al.
Publicado: (2018) -
Forecasting Indian infant mortality rate: An application of autoregressive integrated moving average model
por: Mishra, Amit K., et al.
Publicado: (2019) -
Forecasting the Number of Human Immunodeficiency Virus Infections in the Korean Population Using the Autoregressive Integrated Moving Average Model
por: Yu, Hye-Kyung, et al.
Publicado: (2013) -
Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends
por: ArunKumar, K.E., et al.
Publicado: (2022)