Cargando…

Soft windowing application to improve analysis of high-throughput phenotyping data

MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing...

Descripción completa

Detalles Bibliográficos
Autores principales: Haselimashhadi, Hamed, Mason, Jeremy C, Munoz-Fuentes, Violeta, López-Gómez, Federico, Babalola, Kolawole, Acar, Elif F, Kumar, Vivek, White, Jacqui, Flenniken, Ann M, King, Ruairidh, Straiton, Ewan, Seavitt, John Richard, Gaspero, Angelina, Garza, Arturo, Christianson, Audrey E, Hsu, Chih-Wei, Reynolds, Corey L, Lanza, Denise G, Lorenzo, Isabel, Green, Jennie R, Gallegos, Juan J, Bohat, Ritu, Samaco, Rodney C, Veeraragavan, Surabi, Kim, Jong Kyoung, Miller, Gregor, Fuchs, Helmult, Garrett, Lillian, Becker, Lore, Kang, Yeon Kyung, Clary, David, Cho, Soo Young, Tamura, Masaru, Tanaka, Nobuhiko, Soo, Kyung Dong, Bezginov, Alexandr, About, Ghina Bou, Champy, Marie-France, Vasseur, Laurent, Leblanc, Sophie, Meziane, Hamid, Selloum, Mohammed, Reilly, Patrick T, Spielmann, Nadine, Maier, Holger, Gailus-Durner, Valerie, Sorg, Tania, Hiroshi, Masuya, Yuichi, Obata, Heaney, Jason D, Dickinson, Mary E, Wolfgang, Wurst, Tocchini-Valentini, Glauco P, Lloyd, Kevin C Kent, McKerlie, Colin, Seong, Je Kyung, Yann, Herault, de Angelis, Martin Hrabé, Brown, Steve D M, Smedley, Damian, Flicek, Paul, Mallon, Ann-Marie, Parkinson, Helen, Meehan, Terrence F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115897/
https://www.ncbi.nlm.nih.gov/pubmed/31591642
http://dx.doi.org/10.1093/bioinformatics/btz744
_version_ 1783514179907354624
author Haselimashhadi, Hamed
Mason, Jeremy C
Munoz-Fuentes, Violeta
López-Gómez, Federico
Babalola, Kolawole
Acar, Elif F
Kumar, Vivek
White, Jacqui
Flenniken, Ann M
King, Ruairidh
Straiton, Ewan
Seavitt, John Richard
Gaspero, Angelina
Garza, Arturo
Christianson, Audrey E
Hsu, Chih-Wei
Reynolds, Corey L
Lanza, Denise G
Lorenzo, Isabel
Green, Jennie R
Gallegos, Juan J
Bohat, Ritu
Samaco, Rodney C
Veeraragavan, Surabi
Kim, Jong Kyoung
Miller, Gregor
Fuchs, Helmult
Garrett, Lillian
Becker, Lore
Kang, Yeon Kyung
Clary, David
Cho, Soo Young
Tamura, Masaru
Tanaka, Nobuhiko
Soo, Kyung Dong
Bezginov, Alexandr
About, Ghina Bou
Champy, Marie-France
Vasseur, Laurent
Leblanc, Sophie
Meziane, Hamid
Selloum, Mohammed
Reilly, Patrick T
Spielmann, Nadine
Maier, Holger
Gailus-Durner, Valerie
Sorg, Tania
Hiroshi, Masuya
Yuichi, Obata
Heaney, Jason D
Dickinson, Mary E
Wolfgang, Wurst
Tocchini-Valentini, Glauco P
Lloyd, Kevin C Kent
McKerlie, Colin
Seong, Je Kyung
Yann, Herault
de Angelis, Martin Hrabé
Brown, Steve D M
Smedley, Damian
Flicek, Paul
Mallon, Ann-Marie
Parkinson, Helen
Meehan, Terrence F
author_facet Haselimashhadi, Hamed
Mason, Jeremy C
Munoz-Fuentes, Violeta
López-Gómez, Federico
Babalola, Kolawole
Acar, Elif F
Kumar, Vivek
White, Jacqui
Flenniken, Ann M
King, Ruairidh
Straiton, Ewan
Seavitt, John Richard
Gaspero, Angelina
Garza, Arturo
Christianson, Audrey E
Hsu, Chih-Wei
Reynolds, Corey L
Lanza, Denise G
Lorenzo, Isabel
Green, Jennie R
Gallegos, Juan J
Bohat, Ritu
Samaco, Rodney C
Veeraragavan, Surabi
Kim, Jong Kyoung
Miller, Gregor
Fuchs, Helmult
Garrett, Lillian
Becker, Lore
Kang, Yeon Kyung
Clary, David
Cho, Soo Young
Tamura, Masaru
Tanaka, Nobuhiko
Soo, Kyung Dong
Bezginov, Alexandr
About, Ghina Bou
Champy, Marie-France
Vasseur, Laurent
Leblanc, Sophie
Meziane, Hamid
Selloum, Mohammed
Reilly, Patrick T
Spielmann, Nadine
Maier, Holger
Gailus-Durner, Valerie
Sorg, Tania
Hiroshi, Masuya
Yuichi, Obata
Heaney, Jason D
Dickinson, Mary E
Wolfgang, Wurst
Tocchini-Valentini, Glauco P
Lloyd, Kevin C Kent
McKerlie, Colin
Seong, Je Kyung
Yann, Herault
de Angelis, Martin Hrabé
Brown, Steve D M
Smedley, Damian
Flicek, Paul
Mallon, Ann-Marie
Parkinson, Helen
Meehan, Terrence F
author_sort Haselimashhadi, Hamed
collection PubMed
description MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce ‘soft windowing’, a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype–phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-7115897
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-71158972020-08-04 Soft windowing application to improve analysis of high-throughput phenotyping data Haselimashhadi, Hamed Mason, Jeremy C Munoz-Fuentes, Violeta López-Gómez, Federico Babalola, Kolawole Acar, Elif F Kumar, Vivek White, Jacqui Flenniken, Ann M King, Ruairidh Straiton, Ewan Seavitt, John Richard Gaspero, Angelina Garza, Arturo Christianson, Audrey E Hsu, Chih-Wei Reynolds, Corey L Lanza, Denise G Lorenzo, Isabel Green, Jennie R Gallegos, Juan J Bohat, Ritu Samaco, Rodney C Veeraragavan, Surabi Kim, Jong Kyoung Miller, Gregor Fuchs, Helmult Garrett, Lillian Becker, Lore Kang, Yeon Kyung Clary, David Cho, Soo Young Tamura, Masaru Tanaka, Nobuhiko Soo, Kyung Dong Bezginov, Alexandr About, Ghina Bou Champy, Marie-France Vasseur, Laurent Leblanc, Sophie Meziane, Hamid Selloum, Mohammed Reilly, Patrick T Spielmann, Nadine Maier, Holger Gailus-Durner, Valerie Sorg, Tania Hiroshi, Masuya Yuichi, Obata Heaney, Jason D Dickinson, Mary E Wolfgang, Wurst Tocchini-Valentini, Glauco P Lloyd, Kevin C Kent McKerlie, Colin Seong, Je Kyung Yann, Herault de Angelis, Martin Hrabé Brown, Steve D M Smedley, Damian Flicek, Paul Mallon, Ann-Marie Parkinson, Helen Meehan, Terrence F Bioinformatics Original Papers MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce ‘soft windowing’, a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype–phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-03 2019-10-08 /pmc/articles/PMC7115897/ /pubmed/31591642 http://dx.doi.org/10.1093/bioinformatics/btz744 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Haselimashhadi, Hamed
Mason, Jeremy C
Munoz-Fuentes, Violeta
López-Gómez, Federico
Babalola, Kolawole
Acar, Elif F
Kumar, Vivek
White, Jacqui
Flenniken, Ann M
King, Ruairidh
Straiton, Ewan
Seavitt, John Richard
Gaspero, Angelina
Garza, Arturo
Christianson, Audrey E
Hsu, Chih-Wei
Reynolds, Corey L
Lanza, Denise G
Lorenzo, Isabel
Green, Jennie R
Gallegos, Juan J
Bohat, Ritu
Samaco, Rodney C
Veeraragavan, Surabi
Kim, Jong Kyoung
Miller, Gregor
Fuchs, Helmult
Garrett, Lillian
Becker, Lore
Kang, Yeon Kyung
Clary, David
Cho, Soo Young
Tamura, Masaru
Tanaka, Nobuhiko
Soo, Kyung Dong
Bezginov, Alexandr
About, Ghina Bou
Champy, Marie-France
Vasseur, Laurent
Leblanc, Sophie
Meziane, Hamid
Selloum, Mohammed
Reilly, Patrick T
Spielmann, Nadine
Maier, Holger
Gailus-Durner, Valerie
Sorg, Tania
Hiroshi, Masuya
Yuichi, Obata
Heaney, Jason D
Dickinson, Mary E
Wolfgang, Wurst
Tocchini-Valentini, Glauco P
Lloyd, Kevin C Kent
McKerlie, Colin
Seong, Je Kyung
Yann, Herault
de Angelis, Martin Hrabé
Brown, Steve D M
Smedley, Damian
Flicek, Paul
Mallon, Ann-Marie
Parkinson, Helen
Meehan, Terrence F
Soft windowing application to improve analysis of high-throughput phenotyping data
title Soft windowing application to improve analysis of high-throughput phenotyping data
title_full Soft windowing application to improve analysis of high-throughput phenotyping data
title_fullStr Soft windowing application to improve analysis of high-throughput phenotyping data
title_full_unstemmed Soft windowing application to improve analysis of high-throughput phenotyping data
title_short Soft windowing application to improve analysis of high-throughput phenotyping data
title_sort soft windowing application to improve analysis of high-throughput phenotyping data
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115897/
https://www.ncbi.nlm.nih.gov/pubmed/31591642
http://dx.doi.org/10.1093/bioinformatics/btz744
work_keys_str_mv AT haselimashhadihamed softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT masonjeremyc softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT munozfuentesvioleta softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT lopezgomezfederico softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT babalolakolawole softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT acareliff softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT kumarvivek softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT whitejacqui softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT flennikenannm softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT kingruairidh softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT straitonewan softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT seavittjohnrichard softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT gasperoangelina softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT garzaarturo softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT christiansonaudreye softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT hsuchihwei softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT reynoldscoreyl softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT lanzadeniseg softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT lorenzoisabel softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT greenjennier softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT gallegosjuanj softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT bohatritu softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT samacorodneyc softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT veeraragavansurabi softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT kimjongkyoung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT millergregor softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT fuchshelmult softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT garrettlillian softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT beckerlore softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT kangyeonkyung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT clarydavid softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT chosooyoung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT tamuramasaru softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT tanakanobuhiko softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT sookyungdong softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT bezginovalexandr softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT aboutghinabou softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT champymariefrance softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT vasseurlaurent softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT leblancsophie softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT mezianehamid softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT selloummohammed softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT reillypatrickt softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT spielmannnadine softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT maierholger softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT gailusdurnervalerie softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT sorgtania softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT hiroshimasuya softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT yuichiobata softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT heaneyjasond softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT dickinsonmarye softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT wolfgangwurst softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT tocchinivalentiniglaucop softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT lloydkevinckent softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT mckerliecolin softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT seongjekyung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT yannherault softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT deangelismartinhrabe softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT brownstevedm softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT smedleydamian softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT flicekpaul softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT mallonannmarie softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT parkinsonhelen softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata
AT meehanterrencef softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata