Cargando…
Soft windowing application to improve analysis of high-throughput phenotyping data
MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115897/ https://www.ncbi.nlm.nih.gov/pubmed/31591642 http://dx.doi.org/10.1093/bioinformatics/btz744 |
_version_ | 1783514179907354624 |
---|---|
author | Haselimashhadi, Hamed Mason, Jeremy C Munoz-Fuentes, Violeta López-Gómez, Federico Babalola, Kolawole Acar, Elif F Kumar, Vivek White, Jacqui Flenniken, Ann M King, Ruairidh Straiton, Ewan Seavitt, John Richard Gaspero, Angelina Garza, Arturo Christianson, Audrey E Hsu, Chih-Wei Reynolds, Corey L Lanza, Denise G Lorenzo, Isabel Green, Jennie R Gallegos, Juan J Bohat, Ritu Samaco, Rodney C Veeraragavan, Surabi Kim, Jong Kyoung Miller, Gregor Fuchs, Helmult Garrett, Lillian Becker, Lore Kang, Yeon Kyung Clary, David Cho, Soo Young Tamura, Masaru Tanaka, Nobuhiko Soo, Kyung Dong Bezginov, Alexandr About, Ghina Bou Champy, Marie-France Vasseur, Laurent Leblanc, Sophie Meziane, Hamid Selloum, Mohammed Reilly, Patrick T Spielmann, Nadine Maier, Holger Gailus-Durner, Valerie Sorg, Tania Hiroshi, Masuya Yuichi, Obata Heaney, Jason D Dickinson, Mary E Wolfgang, Wurst Tocchini-Valentini, Glauco P Lloyd, Kevin C Kent McKerlie, Colin Seong, Je Kyung Yann, Herault de Angelis, Martin Hrabé Brown, Steve D M Smedley, Damian Flicek, Paul Mallon, Ann-Marie Parkinson, Helen Meehan, Terrence F |
author_facet | Haselimashhadi, Hamed Mason, Jeremy C Munoz-Fuentes, Violeta López-Gómez, Federico Babalola, Kolawole Acar, Elif F Kumar, Vivek White, Jacqui Flenniken, Ann M King, Ruairidh Straiton, Ewan Seavitt, John Richard Gaspero, Angelina Garza, Arturo Christianson, Audrey E Hsu, Chih-Wei Reynolds, Corey L Lanza, Denise G Lorenzo, Isabel Green, Jennie R Gallegos, Juan J Bohat, Ritu Samaco, Rodney C Veeraragavan, Surabi Kim, Jong Kyoung Miller, Gregor Fuchs, Helmult Garrett, Lillian Becker, Lore Kang, Yeon Kyung Clary, David Cho, Soo Young Tamura, Masaru Tanaka, Nobuhiko Soo, Kyung Dong Bezginov, Alexandr About, Ghina Bou Champy, Marie-France Vasseur, Laurent Leblanc, Sophie Meziane, Hamid Selloum, Mohammed Reilly, Patrick T Spielmann, Nadine Maier, Holger Gailus-Durner, Valerie Sorg, Tania Hiroshi, Masuya Yuichi, Obata Heaney, Jason D Dickinson, Mary E Wolfgang, Wurst Tocchini-Valentini, Glauco P Lloyd, Kevin C Kent McKerlie, Colin Seong, Je Kyung Yann, Herault de Angelis, Martin Hrabé Brown, Steve D M Smedley, Damian Flicek, Paul Mallon, Ann-Marie Parkinson, Helen Meehan, Terrence F |
author_sort | Haselimashhadi, Hamed |
collection | PubMed |
description | MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce ‘soft windowing’, a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype–phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-7115897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-71158972020-08-04 Soft windowing application to improve analysis of high-throughput phenotyping data Haselimashhadi, Hamed Mason, Jeremy C Munoz-Fuentes, Violeta López-Gómez, Federico Babalola, Kolawole Acar, Elif F Kumar, Vivek White, Jacqui Flenniken, Ann M King, Ruairidh Straiton, Ewan Seavitt, John Richard Gaspero, Angelina Garza, Arturo Christianson, Audrey E Hsu, Chih-Wei Reynolds, Corey L Lanza, Denise G Lorenzo, Isabel Green, Jennie R Gallegos, Juan J Bohat, Ritu Samaco, Rodney C Veeraragavan, Surabi Kim, Jong Kyoung Miller, Gregor Fuchs, Helmult Garrett, Lillian Becker, Lore Kang, Yeon Kyung Clary, David Cho, Soo Young Tamura, Masaru Tanaka, Nobuhiko Soo, Kyung Dong Bezginov, Alexandr About, Ghina Bou Champy, Marie-France Vasseur, Laurent Leblanc, Sophie Meziane, Hamid Selloum, Mohammed Reilly, Patrick T Spielmann, Nadine Maier, Holger Gailus-Durner, Valerie Sorg, Tania Hiroshi, Masuya Yuichi, Obata Heaney, Jason D Dickinson, Mary E Wolfgang, Wurst Tocchini-Valentini, Glauco P Lloyd, Kevin C Kent McKerlie, Colin Seong, Je Kyung Yann, Herault de Angelis, Martin Hrabé Brown, Steve D M Smedley, Damian Flicek, Paul Mallon, Ann-Marie Parkinson, Helen Meehan, Terrence F Bioinformatics Original Papers MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce ‘soft windowing’, a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype–phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-03 2019-10-08 /pmc/articles/PMC7115897/ /pubmed/31591642 http://dx.doi.org/10.1093/bioinformatics/btz744 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Haselimashhadi, Hamed Mason, Jeremy C Munoz-Fuentes, Violeta López-Gómez, Federico Babalola, Kolawole Acar, Elif F Kumar, Vivek White, Jacqui Flenniken, Ann M King, Ruairidh Straiton, Ewan Seavitt, John Richard Gaspero, Angelina Garza, Arturo Christianson, Audrey E Hsu, Chih-Wei Reynolds, Corey L Lanza, Denise G Lorenzo, Isabel Green, Jennie R Gallegos, Juan J Bohat, Ritu Samaco, Rodney C Veeraragavan, Surabi Kim, Jong Kyoung Miller, Gregor Fuchs, Helmult Garrett, Lillian Becker, Lore Kang, Yeon Kyung Clary, David Cho, Soo Young Tamura, Masaru Tanaka, Nobuhiko Soo, Kyung Dong Bezginov, Alexandr About, Ghina Bou Champy, Marie-France Vasseur, Laurent Leblanc, Sophie Meziane, Hamid Selloum, Mohammed Reilly, Patrick T Spielmann, Nadine Maier, Holger Gailus-Durner, Valerie Sorg, Tania Hiroshi, Masuya Yuichi, Obata Heaney, Jason D Dickinson, Mary E Wolfgang, Wurst Tocchini-Valentini, Glauco P Lloyd, Kevin C Kent McKerlie, Colin Seong, Je Kyung Yann, Herault de Angelis, Martin Hrabé Brown, Steve D M Smedley, Damian Flicek, Paul Mallon, Ann-Marie Parkinson, Helen Meehan, Terrence F Soft windowing application to improve analysis of high-throughput phenotyping data |
title | Soft windowing application to improve analysis of high-throughput phenotyping data |
title_full | Soft windowing application to improve analysis of high-throughput phenotyping data |
title_fullStr | Soft windowing application to improve analysis of high-throughput phenotyping data |
title_full_unstemmed | Soft windowing application to improve analysis of high-throughput phenotyping data |
title_short | Soft windowing application to improve analysis of high-throughput phenotyping data |
title_sort | soft windowing application to improve analysis of high-throughput phenotyping data |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115897/ https://www.ncbi.nlm.nih.gov/pubmed/31591642 http://dx.doi.org/10.1093/bioinformatics/btz744 |
work_keys_str_mv | AT haselimashhadihamed softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT masonjeremyc softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT munozfuentesvioleta softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT lopezgomezfederico softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT babalolakolawole softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT acareliff softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT kumarvivek softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT whitejacqui softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT flennikenannm softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT kingruairidh softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT straitonewan softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT seavittjohnrichard softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT gasperoangelina softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT garzaarturo softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT christiansonaudreye softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT hsuchihwei softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT reynoldscoreyl softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT lanzadeniseg softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT lorenzoisabel softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT greenjennier softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT gallegosjuanj softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT bohatritu softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT samacorodneyc softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT veeraragavansurabi softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT kimjongkyoung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT millergregor softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT fuchshelmult softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT garrettlillian softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT beckerlore softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT kangyeonkyung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT clarydavid softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT chosooyoung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT tamuramasaru softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT tanakanobuhiko softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT sookyungdong softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT bezginovalexandr softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT aboutghinabou softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT champymariefrance softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT vasseurlaurent softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT leblancsophie softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT mezianehamid softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT selloummohammed softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT reillypatrickt softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT spielmannnadine softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT maierholger softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT gailusdurnervalerie softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT sorgtania softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT hiroshimasuya softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT yuichiobata softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT heaneyjasond softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT dickinsonmarye softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT wolfgangwurst softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT tocchinivalentiniglaucop softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT lloydkevinckent softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT mckerliecolin softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT seongjekyung softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT yannherault softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT deangelismartinhrabe softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT brownstevedm softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT smedleydamian softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT flicekpaul softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT mallonannmarie softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT parkinsonhelen softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata AT meehanterrencef softwindowingapplicationtoimproveanalysisofhighthroughputphenotypingdata |