Cargando…

Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†

Reaction mechanisms of organic molecules in a salt environment are of fundamental interest and are potentially relevant for atmospheric chemistry, in particular sea-salt aerosols. Here, we found evidence for lactone formation upon infrared multiple photon dissociation (IRMPD) of non-covalent bromoal...

Descripción completa

Detalles Bibliográficos
Autores principales: Bersenkowitsch, Nina K., Ončák, Milan, Heller, Jakob, Pascher, Tobias F., van der Linde, Christian, Beyer, Martin K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116335/
https://www.ncbi.nlm.nih.gov/pubmed/32421138
http://dx.doi.org/10.1039/d0cp00272k
_version_ 1783514211850125312
author Bersenkowitsch, Nina K.
Ončák, Milan
Heller, Jakob
Pascher, Tobias F.
van der Linde, Christian
Beyer, Martin K.
author_facet Bersenkowitsch, Nina K.
Ončák, Milan
Heller, Jakob
Pascher, Tobias F.
van der Linde, Christian
Beyer, Martin K.
author_sort Bersenkowitsch, Nina K.
collection PubMed
description Reaction mechanisms of organic molecules in a salt environment are of fundamental interest and are potentially relevant for atmospheric chemistry, in particular sea-salt aerosols. Here, we found evidence for lactone formation upon infrared multiple photon dissociation (IRMPD) of non-covalent bromoalkanoate complexes as well as bromoalkanoate embedded in sodium iodide clusters. The mechanism of lactone formation from bromoalkanoates of different chain lengths is studied in the gas phase with and without salt environment by a combination of IRMPD and quantum chemical calculations. IRMPD spectra are recorded in the 833-3846 cmT(1) range by irradiating the clusters with tunable laser systems while they are stored in the cell of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The measurements of the binary complex Br(CH2)(m)COOH·Br(CH2)(m)COO(-) for m = 4 indicate valerolactone formation without salt environment while lactone formation is hindered for longer chain lengths. When embedded in sodium iodide clusters, butyrolactone formation from 4-bromobutyrate seems to take place already during formation of the doped clusters in the electrospray process, evidenced by the infrared (IR) signature of the lactone. In contrast, IRMPD spectra of sodium iodide clusters containing 5-bromovalerate contain signatures for both valerate as well as valerolactone. In both cases, however, a neutral fragment corresponding to the mass of valerolactone is eliminated, indicating that ring formation can be activated by IR light in the salt cluster. Quantum chemical calculations show that already complexation with one sodium ion significantly increases the barrier for lactone formation for all chain lengths. IRMPD of sodium iodide clusters doped with neutral bromoalkanoic acid molecules proceeds by elimination of HI or desorption of the intact acid molecule from the cluster.
format Online
Article
Text
id pubmed-7116335
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-71163352020-11-08 Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters† Bersenkowitsch, Nina K. Ončák, Milan Heller, Jakob Pascher, Tobias F. van der Linde, Christian Beyer, Martin K. Phys Chem Chem Phys Article Reaction mechanisms of organic molecules in a salt environment are of fundamental interest and are potentially relevant for atmospheric chemistry, in particular sea-salt aerosols. Here, we found evidence for lactone formation upon infrared multiple photon dissociation (IRMPD) of non-covalent bromoalkanoate complexes as well as bromoalkanoate embedded in sodium iodide clusters. The mechanism of lactone formation from bromoalkanoates of different chain lengths is studied in the gas phase with and without salt environment by a combination of IRMPD and quantum chemical calculations. IRMPD spectra are recorded in the 833-3846 cmT(1) range by irradiating the clusters with tunable laser systems while they are stored in the cell of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The measurements of the binary complex Br(CH2)(m)COOH·Br(CH2)(m)COO(-) for m = 4 indicate valerolactone formation without salt environment while lactone formation is hindered for longer chain lengths. When embedded in sodium iodide clusters, butyrolactone formation from 4-bromobutyrate seems to take place already during formation of the doped clusters in the electrospray process, evidenced by the infrared (IR) signature of the lactone. In contrast, IRMPD spectra of sodium iodide clusters containing 5-bromovalerate contain signatures for both valerate as well as valerolactone. In both cases, however, a neutral fragment corresponding to the mass of valerolactone is eliminated, indicating that ring formation can be activated by IR light in the salt cluster. Quantum chemical calculations show that already complexation with one sodium ion significantly increases the barrier for lactone formation for all chain lengths. IRMPD of sodium iodide clusters doped with neutral bromoalkanoic acid molecules proceeds by elimination of HI or desorption of the intact acid molecule from the cluster. 2020-06-04 /pmc/articles/PMC7116335/ /pubmed/32421138 http://dx.doi.org/10.1039/d0cp00272k Text en https://creativecommons.org/licenses/by/3.0/ This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (https://creativecommons.org/licenses/by/3.0/) .
spellingShingle Article
Bersenkowitsch, Nina K.
Ončák, Milan
Heller, Jakob
Pascher, Tobias F.
van der Linde, Christian
Beyer, Martin K.
Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
title Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
title_full Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
title_fullStr Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
title_full_unstemmed Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
title_short Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
title_sort evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters†
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116335/
https://www.ncbi.nlm.nih.gov/pubmed/32421138
http://dx.doi.org/10.1039/d0cp00272k
work_keys_str_mv AT bersenkowitschninak evidenceforlactoneformationduringinfraredmultiplephotondissociationspectroscopyofbromoalkanoatedopedsaltclusters
AT oncakmilan evidenceforlactoneformationduringinfraredmultiplephotondissociationspectroscopyofbromoalkanoatedopedsaltclusters
AT hellerjakob evidenceforlactoneformationduringinfraredmultiplephotondissociationspectroscopyofbromoalkanoatedopedsaltclusters
AT paschertobiasf evidenceforlactoneformationduringinfraredmultiplephotondissociationspectroscopyofbromoalkanoatedopedsaltclusters
AT vanderlindechristian evidenceforlactoneformationduringinfraredmultiplephotondissociationspectroscopyofbromoalkanoatedopedsaltclusters
AT beyermartink evidenceforlactoneformationduringinfraredmultiplephotondissociationspectroscopyofbromoalkanoatedopedsaltclusters