Cargando…
Measuring directed functional connectivity using non-parametric directionality analysis: Validation and comparison with non-parametric Granger Causality
BACKGROUND: ‘Non-parametric directionality’ (NPD) is a novel method for estimation of directed functional connectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions in simulated spiking networks in Halliday et al. (2015). METHODS: This wo...
Autores principales: | West, Timothy O., Halliday, David M., Bressler, Steven L., Farmer, Simon F., Litvak, Vladimir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116477/ https://www.ncbi.nlm.nih.gov/pubmed/32325209 http://dx.doi.org/10.1016/j.neuroimage.2020.116796 |
Ejemplares similares
-
Dynamic changes in direction and frequency range of inter-areal cortical interactions revealed by non-parametric Granger causality
por: Tiesinga, Paul
Publicado: (2013) -
Granger causality revisited
por: Friston, Karl J., et al.
Publicado: (2014) -
NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis()
por: Soleimani, Behrad, et al.
Publicado: (2022) -
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
por: Nicolaou, Nicoletta, et al.
Publicado: (2016) -
Parametric and non-parametric gradient matching for network inference: a comparison
por: Dony, Leander, et al.
Publicado: (2019)