Cargando…

A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain

Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentra...

Descripción completa

Detalles Bibliográficos
Autores principales: Schneider, Rochelle, Vicedo-Cabrera, Ana M., Sera, Francesco, Masselot, Pierre, Stafoggia, Massimo, de Hoogh, Kees, Kloog, Itai, Reis, Stefan, Vieno, Massimo, Gasparrini, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116547/
https://www.ncbi.nlm.nih.gov/pubmed/33408882
http://dx.doi.org/10.3390/rs12223803
_version_ 1783514226204082176
author Schneider, Rochelle
Vicedo-Cabrera, Ana M.
Sera, Francesco
Masselot, Pierre
Stafoggia, Massimo
de Hoogh, Kees
Kloog, Itai
Reis, Stefan
Vieno, Massimo
Gasparrini, Antonio
author_facet Schneider, Rochelle
Vicedo-Cabrera, Ana M.
Sera, Francesco
Masselot, Pierre
Stafoggia, Massimo
de Hoogh, Kees
Kloog, Itai
Reis, Stefan
Vieno, Massimo
Gasparrini, Antonio
author_sort Schneider, Rochelle
collection PubMed
description Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM(2.5)) levels across Great Britain between 2008–2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM(2.5) series using co-located PM(10) measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM(2.5). Stage-4 applies Stage-3 models to estimate daily PM(2.5) concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R(2) of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R(2) of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM(2.5).
format Online
Article
Text
id pubmed-7116547
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-71165472021-01-05 A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain Schneider, Rochelle Vicedo-Cabrera, Ana M. Sera, Francesco Masselot, Pierre Stafoggia, Massimo de Hoogh, Kees Kloog, Itai Reis, Stefan Vieno, Massimo Gasparrini, Antonio Remote Sens (Basel) Article Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM(2.5)) levels across Great Britain between 2008–2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM(2.5) series using co-located PM(10) measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM(2.5). Stage-4 applies Stage-3 models to estimate daily PM(2.5) concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R(2) of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R(2) of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM(2.5). 2020-11-20 /pmc/articles/PMC7116547/ /pubmed/33408882 http://dx.doi.org/10.3390/rs12223803 Text en https://creativecommons.org/licenses/by/4.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schneider, Rochelle
Vicedo-Cabrera, Ana M.
Sera, Francesco
Masselot, Pierre
Stafoggia, Massimo
de Hoogh, Kees
Kloog, Itai
Reis, Stefan
Vieno, Massimo
Gasparrini, Antonio
A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
title A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
title_full A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
title_fullStr A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
title_full_unstemmed A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
title_short A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
title_sort satellite-based spatio-temporal machine learning model to reconstruct daily pm(2.5) concentrations across great britain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116547/
https://www.ncbi.nlm.nih.gov/pubmed/33408882
http://dx.doi.org/10.3390/rs12223803
work_keys_str_mv AT schneiderrochelle asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT vicedocabreraanam asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT serafrancesco asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT masselotpierre asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT stafoggiamassimo asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT dehooghkees asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT kloogitai asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT reisstefan asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT vienomassimo asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT gasparriniantonio asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT schneiderrochelle satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT vicedocabreraanam satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT serafrancesco satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT masselotpierre satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT stafoggiamassimo satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT dehooghkees satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT kloogitai satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT reisstefan satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT vienomassimo satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain
AT gasparriniantonio satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain