Cargando…
A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentra...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116547/ https://www.ncbi.nlm.nih.gov/pubmed/33408882 http://dx.doi.org/10.3390/rs12223803 |
_version_ | 1783514226204082176 |
---|---|
author | Schneider, Rochelle Vicedo-Cabrera, Ana M. Sera, Francesco Masselot, Pierre Stafoggia, Massimo de Hoogh, Kees Kloog, Itai Reis, Stefan Vieno, Massimo Gasparrini, Antonio |
author_facet | Schneider, Rochelle Vicedo-Cabrera, Ana M. Sera, Francesco Masselot, Pierre Stafoggia, Massimo de Hoogh, Kees Kloog, Itai Reis, Stefan Vieno, Massimo Gasparrini, Antonio |
author_sort | Schneider, Rochelle |
collection | PubMed |
description | Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM(2.5)) levels across Great Britain between 2008–2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM(2.5) series using co-located PM(10) measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM(2.5). Stage-4 applies Stage-3 models to estimate daily PM(2.5) concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R(2) of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R(2) of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM(2.5). |
format | Online Article Text |
id | pubmed-7116547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71165472021-01-05 A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain Schneider, Rochelle Vicedo-Cabrera, Ana M. Sera, Francesco Masselot, Pierre Stafoggia, Massimo de Hoogh, Kees Kloog, Itai Reis, Stefan Vieno, Massimo Gasparrini, Antonio Remote Sens (Basel) Article Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM(2.5)) levels across Great Britain between 2008–2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM(2.5) series using co-located PM(10) measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM(2.5). Stage-4 applies Stage-3 models to estimate daily PM(2.5) concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R(2) of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R(2) of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM(2.5). 2020-11-20 /pmc/articles/PMC7116547/ /pubmed/33408882 http://dx.doi.org/10.3390/rs12223803 Text en https://creativecommons.org/licenses/by/4.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schneider, Rochelle Vicedo-Cabrera, Ana M. Sera, Francesco Masselot, Pierre Stafoggia, Massimo de Hoogh, Kees Kloog, Itai Reis, Stefan Vieno, Massimo Gasparrini, Antonio A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain |
title | A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain |
title_full | A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain |
title_fullStr | A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain |
title_full_unstemmed | A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain |
title_short | A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain |
title_sort | satellite-based spatio-temporal machine learning model to reconstruct daily pm(2.5) concentrations across great britain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116547/ https://www.ncbi.nlm.nih.gov/pubmed/33408882 http://dx.doi.org/10.3390/rs12223803 |
work_keys_str_mv | AT schneiderrochelle asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT vicedocabreraanam asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT serafrancesco asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT masselotpierre asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT stafoggiamassimo asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT dehooghkees asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT kloogitai asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT reisstefan asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT vienomassimo asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT gasparriniantonio asatellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT schneiderrochelle satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT vicedocabreraanam satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT serafrancesco satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT masselotpierre satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT stafoggiamassimo satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT dehooghkees satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT kloogitai satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT reisstefan satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT vienomassimo satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain AT gasparriniantonio satellitebasedspatiotemporalmachinelearningmodeltoreconstructdailypm25concentrationsacrossgreatbritain |