Cargando…
Physiological Artifacts and the Implications for Brain-Machine-Interface Design
The accurate measurement of brain activity by Brain-Machine-Interfaces (BMI) and closed-loop Deep Brain Stimulators (DBS) is one of the most important steps in communicating between the brain and subsequent processing blocks. In conventional chest-mounted systems, frequently used in DBS, a significa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116608/ https://www.ncbi.nlm.nih.gov/pubmed/33479560 http://dx.doi.org/10.1109/SMC42975.2020.9283328 |
_version_ | 1783514229682208768 |
---|---|
author | Sorkhabi, Majid Memarian Benjaber, Moaad Brown, Peter Denison, Timothy |
author_facet | Sorkhabi, Majid Memarian Benjaber, Moaad Brown, Peter Denison, Timothy |
author_sort | Sorkhabi, Majid Memarian |
collection | PubMed |
description | The accurate measurement of brain activity by Brain-Machine-Interfaces (BMI) and closed-loop Deep Brain Stimulators (DBS) is one of the most important steps in communicating between the brain and subsequent processing blocks. In conventional chest-mounted systems, frequently used in DBS, a significant amount of artifact can be induced in the sensing interface, often as a common-mode signal applied between the case and the sensing electrodes. Attenuating this common-mode signal can be a serious challenge in these systems due to finite common-mode-rejection-ratio (CMRR) capability in the interface. Emerging BMI and DBS devices are being developed which can mount on the skull. Mounting the system on the cranial region can potentially suppress these induced physiological signals by limiting the artifact amplitude. In this study, we model the effect of artifacts by focusing on cardiac activity, using a current- source dipole model in a torso-shaped volume conductor. Performing finite element simulation with the different DBS architectures, we estimate the ECG common mode artifacts for several device architectures. Using this model helps define the overall requirements for the total system CMRR to maintain resolution of brain activity. The results of the simulations estimate that the cardiac artifacts for skull-mounted systems will have a significantly lower effect than non-cranial systems that include the pectoral region. It is expected that with a pectoral mounted device, a minimum of 60-80 dB CMRR is required to suppress the ECG artifact, depending on device placement relative to the cardiac dipole, while in cranially mounted devices, a 0 dB CMRR is sufficient, in the worst-case scenario. In addition, the model suggests existing commercial devices could optimize performance with a right-hand side placement. The methods used for estimating cardiac artifacts can be extended to other sources such as motion/muscle sources. The susceptibility of the device to artifacts has significant implications for the practical translation of closed-loop DBS and BMI, including the choice of biomarkers, the system design requirements, and the surgical placement of the device relative to artifact sources. |
format | Online Article Text |
id | pubmed-7116608 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71166082021-01-20 Physiological Artifacts and the Implications for Brain-Machine-Interface Design Sorkhabi, Majid Memarian Benjaber, Moaad Brown, Peter Denison, Timothy Conf Proc IEEE Int Conf Syst Man Cybern Article The accurate measurement of brain activity by Brain-Machine-Interfaces (BMI) and closed-loop Deep Brain Stimulators (DBS) is one of the most important steps in communicating between the brain and subsequent processing blocks. In conventional chest-mounted systems, frequently used in DBS, a significant amount of artifact can be induced in the sensing interface, often as a common-mode signal applied between the case and the sensing electrodes. Attenuating this common-mode signal can be a serious challenge in these systems due to finite common-mode-rejection-ratio (CMRR) capability in the interface. Emerging BMI and DBS devices are being developed which can mount on the skull. Mounting the system on the cranial region can potentially suppress these induced physiological signals by limiting the artifact amplitude. In this study, we model the effect of artifacts by focusing on cardiac activity, using a current- source dipole model in a torso-shaped volume conductor. Performing finite element simulation with the different DBS architectures, we estimate the ECG common mode artifacts for several device architectures. Using this model helps define the overall requirements for the total system CMRR to maintain resolution of brain activity. The results of the simulations estimate that the cardiac artifacts for skull-mounted systems will have a significantly lower effect than non-cranial systems that include the pectoral region. It is expected that with a pectoral mounted device, a minimum of 60-80 dB CMRR is required to suppress the ECG artifact, depending on device placement relative to the cardiac dipole, while in cranially mounted devices, a 0 dB CMRR is sufficient, in the worst-case scenario. In addition, the model suggests existing commercial devices could optimize performance with a right-hand side placement. The methods used for estimating cardiac artifacts can be extended to other sources such as motion/muscle sources. The susceptibility of the device to artifacts has significant implications for the practical translation of closed-loop DBS and BMI, including the choice of biomarkers, the system design requirements, and the surgical placement of the device relative to artifact sources. 2020-10-01 /pmc/articles/PMC7116608/ /pubmed/33479560 http://dx.doi.org/10.1109/SMC42975.2020.9283328 Text en https://creativecommons.org/licenses/by/4.0/ This paper was presented at the 2020 IEEE International Conference on Systems, Man, and Cybernetics, October 11th-14th 2020, Toronto, Canada. This is the accepted manuscript version of the article, released under a Creative Commons Attribution 4.0 License. For more information, refer to https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sorkhabi, Majid Memarian Benjaber, Moaad Brown, Peter Denison, Timothy Physiological Artifacts and the Implications for Brain-Machine-Interface Design |
title | Physiological Artifacts and the Implications for Brain-Machine-Interface Design |
title_full | Physiological Artifacts and the Implications for Brain-Machine-Interface Design |
title_fullStr | Physiological Artifacts and the Implications for Brain-Machine-Interface Design |
title_full_unstemmed | Physiological Artifacts and the Implications for Brain-Machine-Interface Design |
title_short | Physiological Artifacts and the Implications for Brain-Machine-Interface Design |
title_sort | physiological artifacts and the implications for brain-machine-interface design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116608/ https://www.ncbi.nlm.nih.gov/pubmed/33479560 http://dx.doi.org/10.1109/SMC42975.2020.9283328 |
work_keys_str_mv | AT sorkhabimajidmemarian physiologicalartifactsandtheimplicationsforbrainmachineinterfacedesign AT benjabermoaad physiologicalartifactsandtheimplicationsforbrainmachineinterfacedesign AT brownpeter physiologicalartifactsandtheimplicationsforbrainmachineinterfacedesign AT denisontimothy physiologicalartifactsandtheimplicationsforbrainmachineinterfacedesign |