Cargando…
A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector
Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116783/ https://www.ncbi.nlm.nih.gov/pubmed/33574576 http://dx.doi.org/10.1038/s41477-021-00854-9 |
Sumario: | Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein.Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species.Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologs and paralogs. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogs and alleles of the recognized effector, facilitating durable resistance against P. infestans. |
---|