Cargando…

Space-time logic of liver gene expression at sublobular scale

The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interpla...

Descripción completa

Detalles Bibliográficos
Autores principales: Droin, Colas, El Kholtei, Jakob, Halpern, Keren Bahar, Hurni, Clémence, Rozenberg, Milena, Muvkadi, Sapir, Itzkovitz, Shalev, Naef, Felix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116850/
https://www.ncbi.nlm.nih.gov/pubmed/33432202
http://dx.doi.org/10.1038/s42255-020-00323-1
Descripción
Sumario:The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the circadian clock, systemic signals and feeding rhythms. However, liver zonation was previously analyzed as a static phenomenon, and liver chronobiology at tissue level resolution. Here, we use single-cell RNA-seq to investigate the interplay between gene regulation in space and time. Using mixed-effect models of mRNA expression and smFISH validations, we find that many genes in the liver are both zonated and rhythmic, most of them showing multiplicative space-time effects. Such dually regulated genes cover key hepatic functions such as lipid, carbohydrate and amino acid metabolism, but also previously unassociated genes, such as protein chaperones. Our data also suggest that rhythmic and localized expression of Wnt targets could be explained by rhythmically expressed Wnt ligands from non-parenchymal cells near the central vein. Core circadian clock genes are expressed in a non-zonated manner, indicating that the liver clock is robust to zonation. Together, our scRNA-seq analysis reveals how liver function is compartmentalized spatio-temporally at the sub-lobular scale.