Cargando…
Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets
Brain tissue segmentation from multimodal MRI is a key building block of many neuroimaging analysis pipelines. Established tissue segmentation approaches have, however, not been developed to cope with large anatomical changes resulting from pathology, such as white matter lesions or tumours, and oft...
Autores principales: | Dorent, Reuben, Booth, Thomas, Li, Wenqi, Sudre, Carole H., Kafiabadi, Sina, Cardoso, Jorge, Ourselin, Sebastien, Vercauteren, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116853/ https://www.ncbi.nlm.nih.gov/pubmed/33129151 http://dx.doi.org/10.1016/j.media.2020.101862 |
Ejemplares similares
-
Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm
por: Shapey, Jonathan, et al.
Publicado: (2021) -
Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI
por: McGrath, Hari, et al.
Publicado: (2020) -
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019) -
A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections
por: Pérez-García, Fernando, et al.
Publicado: (2021) -
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
por: Wang, Guotai, et al.
Publicado: (2019)