Cargando…

Alignment using genetic programming with causal trees for identification of protein functions

A hybrid evolutionary model is used to propose a hierarchical homology of protein sequences to identify protein functions systematically. The proposed model offers considerable potentials, considering the inconsistency of existing methods for predicting novel proteins. Because some novel proteins mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hung, Chun-Min, Huang, Yueh-Min, Chang, Ming-Shi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117053/
https://www.ncbi.nlm.nih.gov/pubmed/32288048
http://dx.doi.org/10.1016/j.na.2005.09.048
Descripción
Sumario:A hybrid evolutionary model is used to propose a hierarchical homology of protein sequences to identify protein functions systematically. The proposed model offers considerable potentials, considering the inconsistency of existing methods for predicting novel proteins. Because some novel proteins might align without meaningful conserved domains, maximizing the score of sequence alignment is not the best criterion for predicting protein functions. This work presents a decision model that can minimize the cost of making a decision for predicting protein functions using the hierarchical homologies. Particularly, the model has three characteristics: (i) it is a hybrid evolutionary model with multiple fitness functions that uses genetic programming to predict protein functions on a distantly related protein family, (ii) it incorporates modified robust point matching to accurately compare all feature points using the moment invariant and thin-plate spline theorems, and (iii) the hierarchical homologies holding up a novel protein sequence in the form of a causal tree can effectively demonstrate the relationship between proteins. This work describes the comparisons of nucleocapsid proteins from the putative polyprotein SARS virus and other coronaviruses in other hosts using the model.