Cargando…

The Aging Metabolome—Biomarkers to Hub Metabolites

Aging biology is intimately associated with dysregulated metabolism, which is one of the hallmarks of aging. Aging‐related pathways such as mTOR and AMPK, which are major targets of anti‐aging interventions including rapamcyin, metformin, and exercise, either directly regulate or intersect with meta...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Rishi, Ramanathan, Arvind
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117067/
https://www.ncbi.nlm.nih.gov/pubmed/32068959
http://dx.doi.org/10.1002/pmic.201800407
Descripción
Sumario:Aging biology is intimately associated with dysregulated metabolism, which is one of the hallmarks of aging. Aging‐related pathways such as mTOR and AMPK, which are major targets of anti‐aging interventions including rapamcyin, metformin, and exercise, either directly regulate or intersect with metabolic pathways. In this review, numerous candidate bio‐markers of aging that have emerged using metabolomics are outlined. Metabolomics studies also reveal that not all metabolites are created equally. A set of core “hub” metabolites are emerging as central mediators of aging. The hub metabolites reviewed here are nicotinamide adenine dinucleotide, reduced nicotinamide dinucleotide phosphate, α‐ketoglutarate, and β‐hydroxybutyrate. These “hub” metabolites have signaling and epigenetic roles along with their canonical roles as co‐factors or intermediates of carbon metabolism. Together these hub metabolites suggest a central role of the TCA cycle in signaling and metabolic dysregulation associated with aging.