Cargando…

Attenuation and characterization of porcine enteric alphacoronavirus strain GDS04 via serial cell passage

Porcine enteric alphacoronavirus (PEAV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in newborn piglets. In this study, an original, highly virulent PEAV strain GDS04 was serially passaged in Vero cells. The virus titers and sizes of syncytia increased gradual...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhichao, Lin, Ying, Zou, Chuangchao, Peng, Peng, Wu, Yanan, Wei, Ying, Liu, Yuan, Gong, Lang, Cao, Yongchang, Xue, Chunyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117411/
https://www.ncbi.nlm.nih.gov/pubmed/31767069
http://dx.doi.org/10.1016/j.vetmic.2019.108489
Descripción
Sumario:Porcine enteric alphacoronavirus (PEAV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in newborn piglets. In this study, an original, highly virulent PEAV strain GDS04 was serially passaged in Vero cells. The virus titers and sizes of syncytia increased gradually with the cell passages. Newborn piglets were orally inoculated with PEAV P15, P67 and P100. Compared with P15 and P67, P100 resulted in only mild clinical signs and intestinal lesions in piglets. The virus shedding in feces and viral antigens in intestinal tract were markedly reduced in P100-inoculated piglets. Importantly, all P100-inoculated newborn piglets survived, indicating that P100 was an attenuated variant. Sequence analysis revealed that the virulent strain GDS04 had four, one, six and eleven amino acid differences in membrane, nucleocapsid, spike and ORF1ab proteins, respectively, from P100. Furthermore, more differences in the predicted three-dimensional structure of S protein between GDS04 and P100 were observed, indicating that these differences might be associated with the pathogenicity of PEAV. Collectively, our research successfully prepared a PEAV attenuated variant which might serve as a live attenuated vaccine candidate against PEAV infection.