Cargando…

Suppression of porcine reproductive and respiratory syndrome virus replication by morpholino antisense oligomers

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a contagious disease characterized by reproductive failure in sows and respiratory disease in piglets. This infectious disease results in significant losses in the swine industry and specific anti-PRRSV drugs are n...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yan-Jin, Stein, David A., Fan, Su-Min, Wang, Kai-Yu, Kroeker, Andrew D., Meng, Xiang-Jin, Iversen, Patrick L., Matson, David O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117520/
https://www.ncbi.nlm.nih.gov/pubmed/16839712
http://dx.doi.org/10.1016/j.vetmic.2006.06.006
Descripción
Sumario:Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a contagious disease characterized by reproductive failure in sows and respiratory disease in piglets. This infectious disease results in significant losses in the swine industry and specific anti-PRRSV drugs are needed. In this study, we evaluated a novel class of antisense compounds, peptide-conjugated phosphorodiamidate morpholino oligomers (P-PMOs), for their ability to suppress PRRSV replication in cell culture. P-PMOs are analogs of single-stranded DNA and contain a modified backbone that confers highly specific binding to RNA and resistance to nucleases. Of six P-PMOs tested, one (‘5UP1’), with sequence complementary to the 5′-terminal 21 nucleotides of the PRRSV genome, was found to be highly effective at reducing PRRSV replication in a specific and dose-dependent manner in CRL11171 cells in culture. 5UP1 treatment generated up to a 4.5 log reduction in infectious PRRSV yield, while a control P-PMO had no effect on viral titer. Immunofluorescence assay with an anti-PRRSV monoclonal antibody confirmed the titer observations. The sequence-specificity of 5UP1 effect was confirmed in part by a cell-free luciferase reporter assay system, which showed that 5UP1-mediated inhibition of translation decreased if the target-RNA contained mispairings in relation to the 5UP1 P-PMO. Real-time RT-PCR showed that the production of PRRSV negative-sense RNA was reduced if 5UP1 was added to cells at up to 6 h post-virus inoculation. Cell viability assays detected no cytotoxicity of 5UP1 within the concentration-range of this study. These results indicate that P-PMO 5UP1 has potential as an anti-PRRSV agent.