Cargando…
In vivo functional characterization of the SARS-Coronavirus 3a protein in Drosophila()
The Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3a locus encodes a 274 a.a. novel protein, and its expression has been confirmed in SARS patients. To study functional roles of 3a, we established a transgenic fly model for the SARS-CoV 3a gene. Misexpression of 3a in Drosophila caused a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117541/ https://www.ncbi.nlm.nih.gov/pubmed/16212942 http://dx.doi.org/10.1016/j.bbrc.2005.09.098 |
Sumario: | The Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3a locus encodes a 274 a.a. novel protein, and its expression has been confirmed in SARS patients. To study functional roles of 3a, we established a transgenic fly model for the SARS-CoV 3a gene. Misexpression of 3a in Drosophila caused a dominant rough eye phenotype. Using a specific monoclonal antibody, we demonstrated that the 3a protein displayed a punctate cytoplasmic localization in Drosophila as in SARS-CoV-infected cells. We provide genetic evidence to support that 3a is functionally related to clathrin-mediated endocytosis. We further found that 3a misexpression induces apoptosis, which could be modulated by cellular cytochrome c levels and caspase activity. From a forward genetic screen, 78 dominant 3a modifying loci were recovered and the identity of these modifiers revealed that the severity of the 3a-induced rough eye phenotype depends on multiple cellular processes including gene transcriptional regulation. |
---|