Cargando…
Quantifying exploration in reward-based motor learning
Exploration in reward-based motor learning is observable in experimental data as increased variability. In order to quantify exploration, we compare three methods for estimating other sources of variability: sensorimotor noise. We use a task in which participants could receive stochastic binary rewa...
Autores principales: | van Mastrigt, Nina M., Smeets, Jeroen B. J., van der Kooij, Katinka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117770/ https://www.ncbi.nlm.nih.gov/pubmed/32240174 http://dx.doi.org/10.1371/journal.pone.0226789 |
Ejemplares similares
-
Pitfalls in quantifying exploration in reward-based motor learning and how to avoid them
por: van Mastrigt, Nina M., et al.
Publicado: (2021) -
Implicit reward-based motor learning
por: van Mastrigt, Nina M., et al.
Publicado: (2023) -
Implicit reward-based motor learning
por: van Mastrigt, Nina M., et al.
Publicado: (2023) -
Learning a reach trajectory based on binary reward feedback
por: van der Kooij, Katinka, et al.
Publicado: (2021) -
Correction: Reward abundance interferes with error-based learning in a visuomotor adaptation task
por: van der Kooij, Katinka, et al.
Publicado: (2019)