Cargando…
Schistosoma species detection by environmental DNA assays in African freshwaters
BACKGROUND: Schistosomiasis is a neglected tropical parasitic disease associated with severe pathology, mortality and economic loss worldwide. Programs for disease control may benefit from specific and sensitive diagnostic methods to detect Schistosoma trematodes in aquatic environments. Here we rep...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117781/ https://www.ncbi.nlm.nih.gov/pubmed/32203507 http://dx.doi.org/10.1371/journal.pntd.0008129 |
_version_ | 1783514443453300736 |
---|---|
author | Alzaylaee, Hind Collins, Rupert A. Rinaldi, Gabriel Shechonge, Asilatu Ngatunga, Benjamin Morgan, Eric R. Genner, Martin J. |
author_facet | Alzaylaee, Hind Collins, Rupert A. Rinaldi, Gabriel Shechonge, Asilatu Ngatunga, Benjamin Morgan, Eric R. Genner, Martin J. |
author_sort | Alzaylaee, Hind |
collection | PubMed |
description | BACKGROUND: Schistosomiasis is a neglected tropical parasitic disease associated with severe pathology, mortality and economic loss worldwide. Programs for disease control may benefit from specific and sensitive diagnostic methods to detect Schistosoma trematodes in aquatic environments. Here we report the development of novel environmental DNA (eDNA) qPCR assays for the presence of the human-infecting species Schistosoma mansoni, S. haematobium and S. japonicum. METHODOLOGY/PRINCIPAL FINDINGS: We first tested the specificity of the assays across the three species using genomic DNA preparations which showed successful amplification of target sequences with no cross amplification between the three focal species. In addition, we evaluated the specificity of the assays using synthetic DNA of multiple Schistosoma species, and demonstrated a high overall specificity; however, S. japonicum and S. haematobium assays showed cross-species amplification with very closely-related species. We next tested the effectiveness of the S. mansoni assay using eDNA samples from aquaria containing infected host gastropods, with the target species revealed as present in all infected aquaria. Finally, we evaluated the effectiveness of the S. mansoni and S. haematobium assays using eDNA samples from eight discrete natural freshwater sites in Tanzania, and demonstrated strong correspondence between infection status established using eDNA and conventional assays of parasite prevalence in host snails. CONCLUSIONS/SIGNIFICANCE: Collectively, our results suggest that eDNA monitoring is able to detect schistosomes in freshwater bodies, but refinement of the field sampling, storage and assay methods are likely to optimise its performance. We anticipate that environmental DNA-based approaches will help to inform epidemiological studies and contribute to efforts to control and eliminate schistosomiasis in endemic areas. |
format | Online Article Text |
id | pubmed-7117781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71177812020-04-09 Schistosoma species detection by environmental DNA assays in African freshwaters Alzaylaee, Hind Collins, Rupert A. Rinaldi, Gabriel Shechonge, Asilatu Ngatunga, Benjamin Morgan, Eric R. Genner, Martin J. PLoS Negl Trop Dis Research Article BACKGROUND: Schistosomiasis is a neglected tropical parasitic disease associated with severe pathology, mortality and economic loss worldwide. Programs for disease control may benefit from specific and sensitive diagnostic methods to detect Schistosoma trematodes in aquatic environments. Here we report the development of novel environmental DNA (eDNA) qPCR assays for the presence of the human-infecting species Schistosoma mansoni, S. haematobium and S. japonicum. METHODOLOGY/PRINCIPAL FINDINGS: We first tested the specificity of the assays across the three species using genomic DNA preparations which showed successful amplification of target sequences with no cross amplification between the three focal species. In addition, we evaluated the specificity of the assays using synthetic DNA of multiple Schistosoma species, and demonstrated a high overall specificity; however, S. japonicum and S. haematobium assays showed cross-species amplification with very closely-related species. We next tested the effectiveness of the S. mansoni assay using eDNA samples from aquaria containing infected host gastropods, with the target species revealed as present in all infected aquaria. Finally, we evaluated the effectiveness of the S. mansoni and S. haematobium assays using eDNA samples from eight discrete natural freshwater sites in Tanzania, and demonstrated strong correspondence between infection status established using eDNA and conventional assays of parasite prevalence in host snails. CONCLUSIONS/SIGNIFICANCE: Collectively, our results suggest that eDNA monitoring is able to detect schistosomes in freshwater bodies, but refinement of the field sampling, storage and assay methods are likely to optimise its performance. We anticipate that environmental DNA-based approaches will help to inform epidemiological studies and contribute to efforts to control and eliminate schistosomiasis in endemic areas. Public Library of Science 2020-03-23 /pmc/articles/PMC7117781/ /pubmed/32203507 http://dx.doi.org/10.1371/journal.pntd.0008129 Text en © 2020 Alzaylaee et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Alzaylaee, Hind Collins, Rupert A. Rinaldi, Gabriel Shechonge, Asilatu Ngatunga, Benjamin Morgan, Eric R. Genner, Martin J. Schistosoma species detection by environmental DNA assays in African freshwaters |
title | Schistosoma species detection by environmental DNA assays in African freshwaters |
title_full | Schistosoma species detection by environmental DNA assays in African freshwaters |
title_fullStr | Schistosoma species detection by environmental DNA assays in African freshwaters |
title_full_unstemmed | Schistosoma species detection by environmental DNA assays in African freshwaters |
title_short | Schistosoma species detection by environmental DNA assays in African freshwaters |
title_sort | schistosoma species detection by environmental dna assays in african freshwaters |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117781/ https://www.ncbi.nlm.nih.gov/pubmed/32203507 http://dx.doi.org/10.1371/journal.pntd.0008129 |
work_keys_str_mv | AT alzaylaeehind schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters AT collinsruperta schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters AT rinaldigabriel schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters AT shechongeasilatu schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters AT ngatungabenjamin schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters AT morganericr schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters AT gennermartinj schistosomaspeciesdetectionbyenvironmentaldnaassaysinafricanfreshwaters |