Cargando…

The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko

The origin of terrestrial volatiles remains one of the most puzzling questions in planetary sciences. The timing and composition of chondritic and cometary deliveries to Earth has remained enigmatic due to the paucity of reliable measurements of cometary material. This work uses recently measured vo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bekaert, David V., Broadley, Michael W., Marty, Bernard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118078/
https://www.ncbi.nlm.nih.gov/pubmed/32242104
http://dx.doi.org/10.1038/s41598-020-62650-3
Descripción
Sumario:The origin of terrestrial volatiles remains one of the most puzzling questions in planetary sciences. The timing and composition of chondritic and cometary deliveries to Earth has remained enigmatic due to the paucity of reliable measurements of cometary material. This work uses recently measured volatile elemental ratios and noble gas isotope data from comet 67P/Churyumov-Gerasimenko (67P/C-G), in combination with chondritic data from the literature, to reconstruct the composition of Earth’s ancient atmosphere. Comets are found to have contributed ~20% of atmospheric heavy noble gases (i.e., Kr and Xe) but limited amounts of other volatile elements (water, halogens and likely organic materials) to Earth. These cometary noble gases were likely mixed with chondritic - and not solar - sources to form the atmosphere. We show that an ancient atmosphere composed of chondritic and cometary volatiles is more enriched in Xe relative to the modern atmosphere, requiring that 8–12 times the present-day inventory of Xe was lost to space. This potentially resolves the long-standing mystery of Earth’s “missing xenon”, with regards to both Xe elemental depletion and isotopic fractionation in the atmosphere. The inferred Kr/H(2)O and Xe/H(2)O of the initial atmosphere suggest that Earth’s surface volatiles might not have been fully delivered by the late accretion of volatile-rich carbonaceous chondrites. Instead, “dry” materials akin to enstatite chondrites potentially constituted a significant source of chondritic volatiles now residing on the Earth’s surface. We outline the working hypotheses, implications and limitations of this model in the last section of this contribution.