Cargando…
Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites
Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cell...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118198/ https://www.ncbi.nlm.nih.gov/pubmed/32292782 http://dx.doi.org/10.3389/fcell.2020.00195 |
_version_ | 1783514511278342144 |
---|---|
author | Huang, Xue Jiang, Chen Yu, Lihua Yang, Aimin |
author_facet | Huang, Xue Jiang, Chen Yu, Lihua Yang, Aimin |
author_sort | Huang, Xue |
collection | PubMed |
description | Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cellular components between different organelles and have been involved in important cellular functions such as apoptosis, organelle division and biogenesis, and cell growth. Recently, an unprecedented depth and breadth in insights into the details of MCSs have been uncovered. On one hand, extensive MCSs (organelles interactome) are revealed by comprehensive analysis of organelle network with high temporal-spatial resolution at the system level. On the other hand, more and more tethers involving in MCSs are identified and further works are focusing on addressing the role of these tethers in regulating the function of MCSs at the molecular level. These enormous progresses largely depend on the powerful approaches, including several different types of microscopies and various biochemical techniques. These approaches have greatly accelerated recent advances in MCSs at the system and molecular level. In this review, we summarize the current and emerging approaches for studying MCSs, such as various microscopies, proximity-driven fluorescent signal generation and proximity-dependent biotinylation. In addition, we highlight the advantages and disadvantages of the techniques to provide a general guidance for the study of MCSs. |
format | Online Article Text |
id | pubmed-7118198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71181982020-04-14 Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites Huang, Xue Jiang, Chen Yu, Lihua Yang, Aimin Front Cell Dev Biol Cell and Developmental Biology Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cellular components between different organelles and have been involved in important cellular functions such as apoptosis, organelle division and biogenesis, and cell growth. Recently, an unprecedented depth and breadth in insights into the details of MCSs have been uncovered. On one hand, extensive MCSs (organelles interactome) are revealed by comprehensive analysis of organelle network with high temporal-spatial resolution at the system level. On the other hand, more and more tethers involving in MCSs are identified and further works are focusing on addressing the role of these tethers in regulating the function of MCSs at the molecular level. These enormous progresses largely depend on the powerful approaches, including several different types of microscopies and various biochemical techniques. These approaches have greatly accelerated recent advances in MCSs at the system and molecular level. In this review, we summarize the current and emerging approaches for studying MCSs, such as various microscopies, proximity-driven fluorescent signal generation and proximity-dependent biotinylation. In addition, we highlight the advantages and disadvantages of the techniques to provide a general guidance for the study of MCSs. Frontiers Media S.A. 2020-03-27 /pmc/articles/PMC7118198/ /pubmed/32292782 http://dx.doi.org/10.3389/fcell.2020.00195 Text en Copyright © 2020 Huang, Jiang, Yu and Yang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Huang, Xue Jiang, Chen Yu, Lihua Yang, Aimin Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites |
title | Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites |
title_full | Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites |
title_fullStr | Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites |
title_full_unstemmed | Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites |
title_short | Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites |
title_sort | current and emerging approaches for studying inter-organelle membrane contact sites |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118198/ https://www.ncbi.nlm.nih.gov/pubmed/32292782 http://dx.doi.org/10.3389/fcell.2020.00195 |
work_keys_str_mv | AT huangxue currentandemergingapproachesforstudyinginterorganellemembranecontactsites AT jiangchen currentandemergingapproachesforstudyinginterorganellemembranecontactsites AT yulihua currentandemergingapproachesforstudyinginterorganellemembranecontactsites AT yangaimin currentandemergingapproachesforstudyinginterorganellemembranecontactsites |