Cargando…
Quantitative Identification of Major Depression Based on Resting-State Dynamic Functional Connectivity: A Machine Learning Approach
INTRODUCTION: Developing a machine learning-based approach which could provide quantitative identification of major depressive disorder (MDD) is essential for the diagnosis and intervention of this disorder. However, the performances of traditional algorithms using static functional connectivity (SF...
Autores principales: | Yan, Baoyu, Xu, Xiaopan, Liu, Mengwan, Zheng, Kaizhong, Liu, Jian, Li, Jianming, Wei, Lei, Zhang, Binjie, Lu, Hongbing, Li, Baojuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118554/ https://www.ncbi.nlm.nih.gov/pubmed/32292322 http://dx.doi.org/10.3389/fnins.2020.00191 |
Ejemplares similares
-
Multiple-Network Alterations in Major Depressive Disorder With Gastrointestinal Symptoms at Rest Revealed by Global Functional Connectivity Analysis
por: Yan, Meiqi, et al.
Publicado: (2022) -
Whole Brain Resting-State Analysis Reveals Decreased Functional Connectivity in Major Depression
por: Veer, Ilya M., et al.
Publicado: (2010) -
Abnormal resting state effective connectivity within the default mode network in major depressive disorder: A spectral dynamic causal modeling study
por: Li, Liang, et al.
Publicado: (2017) -
Frequency specificity of aberrant triple networks in major depressive disorder: a resting-state effective connectivity study
por: Li, Ying, et al.
Publicado: (2023) -
Editorial: Improving Diagnosis, Treatment, and Prognosis of Neuropsychiatric Disorders by Leveraging Neuroimaging-based Machine Learning
por: Li, Baojuan, et al.
Publicado: (2022)