Cargando…
Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations
BACKGROUND: Recent advances in kernel-based Deep Learning models have introduced a new era in medical research. Originally designed for pattern recognition and image processing, Deep Learning models are now applied to survival prognosis of cancer patients. Specifically, Deep Learning versions of the...
Autores principales: | Huang, Zhi, Johnson, Travis S., Han, Zhi, Helm, Bryan, Cao, Sha, Zhang, Chi, Salama, Paul, Rizkalla, Maher, Yu, Christina Y., Cheng, Jun, Xiang, Shunian, Zhan, Xiaohui, Zhang, Jie, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118823/ https://www.ncbi.nlm.nih.gov/pubmed/32241264 http://dx.doi.org/10.1186/s12920-020-0686-1 |
Ejemplares similares
-
SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer
por: Huang, Zhi, et al.
Publicado: (2019) -
TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining
por: Huang, Zhi, et al.
Publicado: (2021) -
Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression
por: Yu, Christina Y., et al.
Publicado: (2019) -
Spatial cell type composition in normal and Alzheimers human brains is revealed using integrated mouse and human single cell RNA sequencing
por: Johnson, Travis S., et al.
Publicado: (2020) -
Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer’s Disease
por: Johnson, Travis S., et al.
Publicado: (2021)