Cargando…
pyCancerSig: subclassifying human cancer with comprehensive single nucleotide, structural and microsatellite mutational signature deconstruction from whole genome sequencing
BACKGROUND: DNA damage accumulates over the course of cancer development. The often-substantial amount of somatic mutations in cancer poses a challenge to traditional methods to characterize tumors based on driver mutations. However, advances in machine learning technology can take advantage of this...
Autores principales: | Thutkawkorapin, Jessada, Eisfeldt, Jesper, Tham, Emma, Nilsson, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118897/ https://www.ncbi.nlm.nih.gov/pubmed/32245405 http://dx.doi.org/10.1186/s12859-020-3451-8 |
Ejemplares similares
-
SigsPack, a package for cancer mutational signatures
por: Schumann, Franziska, et al.
Publicado: (2019) -
deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution
por: Rosenthal, Rachel, et al.
Publicado: (2016) -
Generating realistic null hypothesis of cancer mutational landscapes using SigProfilerSimulator
por: Bergstrom, Erik N., et al.
Publicado: (2020) -
PyDeT, a PyMOL plug-in for visualizing geometric concepts around proteins
por: Ordog, Rafael
Publicado: (2008) -
PyTMs: a useful PyMOL plugin for modeling common post-translational modifications
por: Warnecke, Andreas, et al.
Publicado: (2014)