Cargando…
MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA
MERS-CoV is the only lethal human CoV still endemic in the Arabian Peninsula and neither vaccine nor therapeutics against MERS-CoV infection is available. The nsp1 of CoV is thought to be a major virulence factor because it suppresses protein synthesis through the degradation of host mRNA. In contra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118922/ https://www.ncbi.nlm.nih.gov/pubmed/28843094 http://dx.doi.org/10.1016/j.virol.2017.08.026 |
Sumario: | MERS-CoV is the only lethal human CoV still endemic in the Arabian Peninsula and neither vaccine nor therapeutics against MERS-CoV infection is available. The nsp1 of CoV is thought to be a major virulence factor because it suppresses protein synthesis through the degradation of host mRNA. In contrast, viral RNA circumvents the nsp1-mediated translational shutoff for an efficient propagation. In this study, we identified amino acid residue in MERS-CoV nsp1 that differ from those of SARS-CoV nsp1, and that appear to be crucial for circumventing the translational shutoff. In addition, reverse genetics analysis suggested the presence of a cis-acting element at the 5′-terminus of the nsp1-coding region, which contributes to the specific recognition of viral RNA that is required for an efficient viral replication. Our results suggest the CoVs share a common mechanism for circumventing the nsp1-mediated translational shutoff. |
---|