Cargando…

The Natural Growth of Subsolid Nodules Predicted by Quantitative Initial CT Features: A Systematic Review

Background: The detection rate for pulmonary nodules, particularly subsolid nodules (SSNs), has been significantly improved. The purpose of this review is to summarize the relationship between quantitative features of initial CT imaging and the subsequent natural growth of SSNs to explore potential...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Chen, Li, Jiaying, Wu, Linyu, Kong, Dexing, Xu, Maosheng, Zhou, Changyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119340/
https://www.ncbi.nlm.nih.gov/pubmed/32292716
http://dx.doi.org/10.3389/fonc.2020.00318
Descripción
Sumario:Background: The detection rate for pulmonary nodules, particularly subsolid nodules (SSNs), has been significantly improved. The purpose of this review is to summarize the relationship between quantitative features of initial CT imaging and the subsequent natural growth of SSNs to explore potential reasons for these findings. Methods: Relevant studies were collected from a literature search of PubMed, Embase, Web of Science, and Cochrane. Data extraction was performed on the patients' basic information, CT methods, and acquisition methods, including quantitative CT features, and statistical methods. Results: A total of 10 relevant articles were included in our review, which included 850 patients with 1,026 SSNs. Overall, the results were variable, and the key findings were as follows. Seven studies looked at the relationship between the diameter and growth of SSNs, showing that SSNs with larger diameters were associated with increased growth. An additional three studies which focused on the relationship between CT attenuation and the growth of SSNs showed that SSNs with a high CT attenuation were associated with increased growth. Conclusion: CT attenuation may be useful in predicting the natural growth of SSNs, and mean CT attenuation may be more useful in predicting the natural growth of pure ground glass nodules (GGNs) than part-solid GGNs. While evaluation by diameter did have some limitations, it demonstrates value in predicting the growth of SSNs.