Cargando…

Natural killer cell activity of chicken intraepithelial leukocytes against rotavirus-infected target cells

Intraepithelial leukocytes (IEL) and splenocytes collected from uninfected and rotavirus-infected chickens were evaluated for cytotoxic activity against a natural killer (NK) cell-susceptible lymphoblastoid cell line (LSCC-RP9) and against rotavirus-infected chick kidney cells in 4-h chromium-releas...

Descripción completa

Detalles Bibliográficos
Autores principales: Myers, T.J., Schat, K.A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119783/
https://www.ncbi.nlm.nih.gov/pubmed/2260281
http://dx.doi.org/10.1016/0165-2427(90)90064-Y
Descripción
Sumario:Intraepithelial leukocytes (IEL) and splenocytes collected from uninfected and rotavirus-infected chickens were evaluated for cytotoxic activity against a natural killer (NK) cell-susceptible lymphoblastoid cell line (LSCC-RP9) and against rotavirus-infected chick kidney cells in 4-h chromium-release assays. Both splenocytes and IELs from uninfected and rotavirus-infected chickens were cytotoxic for LSCC-RP9, and the levels of this NK cell activity were not altered by infection of the host with rotavirus. IELs but not splenocytes from uninfected and rotavirus-infected chickens were cytotoxic for rotavirus-infected but not for uninfected chick kidney cell targets. Because this cytotoxic activity was not induced nor altered by rotavirus infection of the host, and was not major histocompatibility complex-restricted, it was considered to be due to NK cell activity. The cytotoxicity of IELs against rotavirus-infected target cells was dose-dependent; however, there was some suppression of cytotoxic activity at high effector to target cell ratios. There were no differences in the cytotoxic activities of IELs collected from the duodenum versus the jejunum. The in vitro cytotoxic activity of IELs against rotavirus-infected target cells suggested that NK cell activity may be an important immune response to rotavirus infections in vivo. The absence of cytotoxic activity by splenocytes against rotavirus-infected target cells indicated that there may be different subpopulations of NK cells in the spleen and intestinal epithelium of chickens.