Cargando…
Detecting outliers in segmented genomes of flu virus using an alignment-free approach
In this paper, we propose a new approach to detecting outliers in a set of segmented genomes of the flu virus, a data set with a heterogeneous set of sequences. The approach has the following computational phases: feature extraction, which is a mapping into feature space, alignment-free distance mea...
Autor principal: | Daoud, Mosaab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120353/ https://www.ncbi.nlm.nih.gov/pubmed/32224835 http://dx.doi.org/10.5808/GI.2020.18.1.e2 |
Ejemplares similares
-
A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus
por: Daoud, Mosaab
Publicado: (2020) -
OD-seq: outlier detection in multiple sequence alignments
por: Jehl, Peter, et al.
Publicado: (2015) -
EvalMSA: A Program to Evaluate Multiple Sequence Alignments and Detect Outliers
por: Chiner-Oms, Alvaro, et al.
Publicado: (2016) -
Insights of window-bsed mechanism approach to visualize composite bioData point in feature spaces
por: Daoud, Mosaab
Publicado: (2019) -
Alignment-Free Analyses of Nucleic Acid Sequences Using Graphical Representation (with Special Reference to Pandemic Bird Flu and Swine Flu)
por: Nandy, Ashesh, et al.
Publicado: (2018)