Cargando…

Alignment-Free Z-Curve Genomic Cepstral Coefficients and Machine Learning for Classification of Viruses

Accurate detection of pathogenic viruses has become highly imperative. This is because viral diseases constitute a huge threat to human health and wellbeing on a global scale. However, both traditional and recent techniques for viral detection suffer from various setbacks. In codicil, some of the ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Adetiba, Emmanuel, Olugbara, Oludayo O., Taiwo, Tunmike B., Adebiyi, Marion O., Badejo, Joke A., Akanle, Matthew B., Matthews, Victor O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120486/
http://dx.doi.org/10.1007/978-3-319-78723-7_25
Descripción
Sumario:Accurate detection of pathogenic viruses has become highly imperative. This is because viral diseases constitute a huge threat to human health and wellbeing on a global scale. However, both traditional and recent techniques for viral detection suffer from various setbacks. In codicil, some of the existing alignment-free methods are also limited with respect to viral detection accuracy. In this paper, we present the development of an alignment-free, digital signal processing based method for pathogenic viral detection named Z-Curve Genomic Cesptral Coefficients (ZCGCC). To evaluate the method, ZCGCC were computed from twenty six pathogenic viral strains extracted from the ViPR corpus. Naïve Bayesian classifier, which is a popular machine learning method was experimentally trained and validated using the extracted ZCGCC and other alignment-free methods in the literature. Comparative results show that the proposed ZCGCC gives good accuracy (93.0385%) and improved performance to existing alignment-free methods.