Cargando…
Pharmacogenomics of Viral Diseases
Viral diseases are leading cause of deaths worldwide as WHO report suggests that hepatitis A virus (HAV) infects more than 80 % of the population of many developing countries. Viral hepatitis B (HBV) affects an estimated 360 million people, whereas hepatitis C affects 123 million people worldwide, a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120516/ http://dx.doi.org/10.1007/978-81-322-1184-6_28 |
Sumario: | Viral diseases are leading cause of deaths worldwide as WHO report suggests that hepatitis A virus (HAV) infects more than 80 % of the population of many developing countries. Viral hepatitis B (HBV) affects an estimated 360 million people, whereas hepatitis C affects 123 million people worldwide, and last but not least, at current, India has an HIV/AIDS population of approximately 2.4 million people and more than 30 million in whole world and now it has become a reason for 1.8 million death globally; thus, millions of people still struggle for their lives. The progress in medical science has made it possible in overcoming the various fatal diseases such as small pox, chicken pox, dengue, etc., but human immunodeficiency viruses, influenza, and hepatitis virus have renewed challenge surprisingly. The obstacles and challenges in therapy include existence of antibiotic resistance strains of common organisms due to overuse of antibiotics, lack of vaccines, adverse drug reaction, and last but not least the susceptibility concerns. Emergence of pharmacogenomics and pharmacogenetics has shown some promises to take challenges. The discovery of human genome project has opened new vistas to understand the behaviors of genetic makeup in development and progression of diseases and treatment in various viral diseases. Current and previous decade have been engaged in making repositories of polymorphisms (SNPs) of various genes including drug-metabolizing enzymes, receptors, inflammatory cells related with immunity, and antigen-presenting cells, along with the prediction of risks. The genetic makeup alone is most likely an adequate way to handle the therapeutic decision-making process for previous regimen failure. With the introduction of new antiviral therapeutic agents, a significant improvement in progression and overall survival has been achieved, but these drugs have shown several adverse responses in some individuals, so the success is not up to the expectations. Research and acquisition of new knowledge of pharmacogenomics may help in overcoming the prevailing burden of viral diseases. So it will definitely help in selecting the most effective therapeutic agents, effective doses, and drug response for the individuals. Thus, it will be able to transform the laboratory research into the clinical bench side and will also help in understanding the pathogenesis of viral diseases with drug action, so the patients will be managed more properly and finally become able to fulfill the promise of the future. |
---|